
Understanding the Effectiveness of Large Language
Models in Detecting Security Vulnerabilities

Avishree Khare∗
University of Pennsylvania

Philadelphia, USA
akhare@seas.upenn.edu

Saikat Dutta∗
Cornell University

Ithaca, USA
saikatd@cornell.edu

Ziyang Li
University of Pennsylvania

Philadelphia, USA
liby99@seas.upenn.edu

Alaia Solko-Breslin
University of Pennsylvania

Philadelphia, USA
alaia@seas.upenn.edu

Rajeev Alur
University of Pennsylvania

Philadelphia, USA
alur@seas.upenn.edu

Mayur Naik
University of Pennsylvania

Philadelphia, USA
mhnaik@seas.upenn.edu

Abstract—Security vulnerabilities in modern software are
prevalent and harmful. While automated vulnerability detection
techniques have made promising progress, their scalability and
applicability remain challenging. The remarkable performance of
Large Language Models (LLMs), such as GPT-4 and CodeLlama,
on code-related tasks has prompted recent works to explore if
LLMs can be used to detect security vulnerabilities. In this paper,
we perform a more comprehensive study by examining a larger
and more diverse set of datasets, languages, and LLMs, and
qualitatively evaluating detection performance across prompts
and vulnerability classes. Concretely, we evaluate the effectiveness
of 16 pre-trained LLMs on 5,000 code samples—1,000 randomly
selected each from five diverse security datasets. These balanced
datasets encompass synthetic and real-world projects in Java and
C/C++ and cover 25 distinct vulnerability classes.

Our results show that LLMs across all scales and families
show modest effectiveness in end-to-end reasoning about vul-
nerabilities, obtaining an average accuracy of 62.8% and F1
score of 0.71 across all datasets. LLMs are significantly better at
detecting vulnerabilities that typically only need intra-procedural
reasoning, such as OS Command Injection and NULL Pointer
Dereference. Moreover, LLMs report higher accuracies on these
vulnerabilities than popular static analysis tools, such as CodeQL.

We find that advanced prompting strategies that involve step-
by-step analysis significantly improve performance of LLMs on
real-world datasets in terms of F1 score (by up to 0.18 on
average). Interestingly, we observe that LLMs show promising
abilities at performing parts of the analysis correctly, such as
identifying vulnerability-related specifications (e.g., sources and
sinks) and leveraging natural language information to understand
code behavior (e.g., to check if code is sanitized). We believe
our insights can motivate future work on LLM-augmented
vulnerability detection systems.

I. INTRODUCTION

Security vulnerabilities afflict software despite decades of
advances in programming languages, program analysis tools,
and software engineering practices. Even well-tested and crit-
ical software such as OpenSSL, a widely used library for ap-
plications that provide secure communications, contains trivial
buffer overflow vulnerabilities, e.g., [1] and [2]. A recent study
by Microsoft showed that more than 70% of vulnerabilities are

*Equal contribution

still caused by well-understood memory safety issues [3]. This
is alarming given the rapidly growing size and complexity of
modern software systems, encompassing numerous programs,
libraries, and modules that interact with each other. Hence, we
need major technical advances to effectively detect security
vulnerabilities in such complex software.

Traditional techniques for automated vulnerability detection,
such as fuzzers [4], and static analyzers such as CodeQL [5]
and Semgrep [6] have made promising strides. For example,
in the last two years, researchers found over 300 security vul-
nerabilities through custom CodeQL queries [7], [8]. However,
these techniques face challenges in scalability and applicabil-
ity. Fuzzing requires manually crafted fuzz drivers and does
not scale to large critical programs with complex inputs, such
as network servers, embedded firmware, and system services.
On the other hand, static analysis relies heavily on manual
API specifications, and skillfully crafted heuristics to balance
precision and scalability. Until recently, GitHub paid a bounty
of over 7K USD for each CodeQL query that found new
critical security bugs [9].

Large Language Models (LLMs), including pre-trained
models such as GPT-4 and CodeLlama, have made remarkable
advances in code-related tasks in a relatively short period. Such
tasks include code completion [12], automated program re-
pair [13]–[15], test generation [16], [17], code evolution [18],
and fault localization [19]. These results clearly show the
promise of LLMs, opening up a new direction for exploring
advanced techniques. Hence, an intriguing question is whether
the state-of-the-art pre-trained LLMs can also be used for
detecting security vulnerabilities in code.

To develop LLM-based solutions, an important first step is
to systematically evaluate the ability of LLMs in detecting
known vulnerabilities. This is especially important in light
of the rapidly evolving landscape of LLMs in three aspects:
scale, diversity, and applicability. First, scaling these models
to ever larger numbers of parameters has led to significant
improvements in their capabilities [20]. For instance, GPT-4,
which is presumably orders of magnitude larger than its 175-

ar
X

iv
:2

31
1.

16
16

9v
3

 [
cs

.C
R

]
 2

3
O

ct
 2

02
4

TABLE I: Summary of our research questions and key findings

Research Questions Findings

RQ1: How do different pre-trained
LLMs perform in detecting security
vulnerabilities across different lan-
guages and datasets? (Section §III-A)

✓ LLMs across all sizes report a mean accuracy of about 62.8% and a mean F1 score of 0.71 across all
datasets.
✗ Average accuracy on real-world datasets is 10.5% lower than that on synthetic datasets.
✓ In stark contrast to other domains, smaller models such as Qwen-2.5-14B and Qwen-2.5-32B report higher
accuracies on the real-world datasets than much larger models such as GPT-4.

RQ2: How do different prompting
strategies affect the performance of
LLMs? (Section III-B)

✓ Using prompts that focus on detecting specific CWEs improves the performance of LLMs.
✓ The Dataflow analysis-based prompt prompt further improves results for larger LLMs with an increase of
up to 0.18 in F1 score on real-world datasets.
✓ We also observe that LLMs often infer the correct sources/sinks/sanitizers but fail in end-to-end reasoning.

RQ3: How does the performance of
LLMs vary across different vulnera-
bility classes? (Section III-C)

✓ LLMs are better at detecting local vulnerabilities that require no global context across datasets (OS Command
Injection, NULL Pointer Dereference, Out-of-bounds Read/Write, etc.).
✗ LLMs struggle to detect vulnerabilities that require additional context or reasoning about complex data
structures (Out-of-bounds Read/Write with C++ structs and pointers).
✓ Certain LLMs are very good at detecting specific CWEs across datasets (Llama-3.1-70B on OS Command
Injection, DeepSeekCoder-7B on NULL Pointer Dereference, etc.).

RQ4: How do LLMs compare to
state-of-the-art static analysis tools?
(Section III-D)

✗ LLMs report lower overall accuracies than CodeQL on all synthetic datasets.
✓ LLMs report higher accuracies than CodeQL on certain vulnerability classes across datasets (Path Traversal,
OS Command Injection, etc). CodeQL reports higher accuracies on Integer Overflow across datasets.

RQ5: How do LLMs compare to
state-of-the-art deep-learning-based
tools? (Section III-E)

✓ Deep Learning(DL)-based tools such as DeepDFA [10] and LineVul [11] report accuracies similar to Qwen-
2.5-32B on CVEFixes C/C++ even after being trained on in-distribution samples whereas Qwen-2.5-32B reports
higher F1 scores.
✓ DL-based tools report lower accuracies and F1 scores than LLMs when trained and evaluated on different
datasets.
✓ LLMs provide natural language explanations for their predictions while DL-based tools provide binary scores
and line numbers that are often difficult to interpret.

billion predecessor GPT-3.5, significantly outperforms GPT-
3.5 on a wide range of code-understanding tasks [21]. Second,
the diversity of LLMs has grown rapidly and now includes not
only proprietary general-purpose ones such as GPT-4 but also
open-source code-specific LLMs such as CodeLlama [22] and
StarCoder [23]. Finally, the reasoning capabilities of LLMs
(and hence their applicability) may vary significantly across
different prompting strategies and programming languages.
All these factors open up a large exploration space for applying
LLMs to the challenging task of vulnerability detection.

TABLE II: Comparison with other studies that focus on
vulnerability detection with LLMs. Superscript U indicates an
unbalanced dataset. Static Analysis is abbreviated as SA and
Deep Learning as DL.

Study Features [24] [25] [26] [27] [28] Our Work
Languages C/C++ C/C++ C/C++ C,Py C/C++ C/C++,Java
#Samples 368 347 100 96 25.9KU 5000
#CWEs 25 N/A N/A 8 140 25

#LLMs (>1B parameters) 3 16 11 5 4 16

Comparison of various LLMs ✓ ✓ ✓ ✓ ✓ ✓
Qualitative prompt analysis ✗ ✗ ✗ ✓ ✗ ✓
CWE-wise analysis ✗ ✗ ✗ ✗ ✗ ✓
Comparison with SA tools ✗ ✓ ✗ ✗ ✗ ✓
Comparison with DL tools ✓ ✗ ✗ ✗ ✓ ✓

Our Work. We study the vulnerability detection capabilities
of 16 state-of-the-art LLMs across different scales and
families, including proprietary models such as Gemini
and GPT-4, and open-source models like CodeLlama and
Qwen. We evaluate these models on five popular security

vulnerability datasets across two languages, C/C++ and Java,
and 25 vulnerability classes.

We first study how LLMs perform on the task of vulnerabil-
ity detection using three prompting strategies and how these
strategies qualitatively compare against each other. We also
attempt to identify vulnerability classes that most benefit from
the use of LLMs and these prompting techniques. Our simplest
prompting strategies include the Basic prompt, which simply
asks an LLM to check for any vulnerabilities in the given code
and the CWE specific prompt, which asks the LLM to check
for a specific class of vulnerabilities or CWEs (such as Buffer
Overflows). Inspired by the success of static analysis tools like
CodeQL that use dataflow analysis to detect vulnerabilities, we
design a prompting strategy called Dataflow analysis-based
prompt. This prompt asks the LLM to simulate a source-sink-
sanitizer based dataflow analysis on the target code snippet
before predicting if it is vulnerable.

We next compare LLMs with existing vulnerability de-
tection tools, namely static analysis-based CodeQL and two
deep learning-based techniques, DeepDFA [10] and Line-
Vul [11]. As discussed earlier, static vulnerability detection
tools are limited by the need for concrete API specifications
and require compiling / building entire target projects before
detection. Pre-LLM deep learning-based approaches such as
DeepDFA [10] and LineVul [11] attempt to mitigate some of
these limitations through fine-tuned neural representations of
code. On the other hand, LLMs do not require the compilation
of complete projects as they can be prompted to analyze partial
code snippets. Moreover, they already have an internal model
of APIs through pre-training and do not need to be trained

on large datasets from scratch. We analyze the benefits and
shortcomings of LLMs over CodeQL, including vulnerability
classes where they outperform each other. We also study how
they compare against the deep learning based-approaches in
terms of generalization across datasets.
Comparison with other studies. There are other studies that
also evaluate the effectiveness of LLMs on the task of vulner-
ability detection [24]–[28]. Table II presents a comparison of
our work with these studies. We present our study as the most
comprehensive on this topic for the following reasons:
• Size and diversity of the datasets: We curate a dataset

of 5K samples, with equal number of vulnerable and non-
vulnerable snippets. The only larger dataset is from [28]
but only 695 of their 25.9K samples are vulnerable. Fur-
thermore, our study is the first to include Java code.

• Comparison with non-LLM-based tools: Our study is the
first to compare LLMs with CodeQL and specialized Deep
Learning-based tools. Moreover, we also find vulnerability
classes where LLMs outperform CodeQL and vice versa
which is useful for deployment.

• Qualitative analysis of prompts and vulnerability classes:
While other studies quantitatively compare prompting strate-
gies, we also attempt to qualitatively identify the benefits of
various prompt elements. Furthermore, we identify partial
capabilities offered by some of these prompts that can be
leveraged in LLM-based detection tools. We also identify
vulnerability classes where LLMs perform well.

Contributions. Our research questions and key findings are
summarized in Table I. To summarize, we make the following
contributions in this paper:
• Empirical Study: We conduct the largest comprehensive

study on how state-of-the-art LLMs perform in detecting se-
curity vulnerabilities across 5000 samples from five datasets,
two programming languages (C/C++ and Java) and covering
25 unique vulnerability classes.

• Comparison with other vulnerability detection tools:
We contrast the performance of LLMs against popular
static analysis and deep-learning-based vulnerability detec-
tion tools. We also identify vulnerability classes where
LLMs perform better/worse than some of these tools.

• Qualitative comparison of prompting strategies: We
quantitatively and qualitatively compare three prompting
strategies, including a novel prompt inspired by dataflow
analysis-based vulnerability detection.

• Insights: We perform a rigorous manual analysis of LLMs’
predictions and highlight vulnerability patterns that impact
the performance of these models.

II. APPROACH

A. Datasets

For our study, we select five diverse synthetic/real-world
vulnerability datasets from two languages: C++ and Java.
Table III presents the details of each dataset, such as the
dataset size, programming language, number of vulnerable and
non-vulnerable samples, and the number of unique CWEs.

The synthetic benchmarks, OWASP and Juliet, allow for easy
comparison with CodeQL and the real-world benchmarks,
CVEFixes, are useful for evaluating practical utility. While
many real-world datasets have been proposed in the literature,
we selected CVEFixes because it is the only dataset that 1)
contains vulnerability metadata such as CVE and CWE IDs, 2)
is two-sided, i.e., contains both vulnerable and non-vulnerable
code samples, and 3) covers multiple languages such as Java
and C/C++. Table IV shows a comparison of existing real-
world vulnerability datasets. We briefly describe each of the
selected datasets next:

TABLE III: Details of Selected Datasets
Dataset Language Size Vul/Non-Vul CWEs

OWASP [29] Java 2740 1415/1325 11
SARD Juliet (C/C++) [30] C/C++ 81,280 40,640/40,640 118
SARD Juliet (Java) [31] Java 35,940 17,970/17,970 112
CVEFixes [32] C/C++ 19,576 8223/11,347 131
CVEFixes [32] Java 3926 1461/2465 68

1) OWASP (Synthetic): The Open Web Application Secu-
rity Project (OWASP) benchmark [29] is a Java test suite
designed to evaluate the effectiveness of vulnerability detec-
tion tools. Each test represents a synthetically designed code
snippet containing a security vulnerability.

2) Juliet (Synthetic): Juliet [33] is a widely-used vulnerabil-
ity dataset developed by NIST with thousands of synthetically
generated test cases from various known vulnerability patterns.

3) CVEFixes (Real-World): Bhandari et al. [32] curated a
dataset, known as CVEFixes, from 5365 Common Vulnerabil-
ities and Exposures (CVE) records from the National Vulner-
ability Database (NVD). From each CVE, they automatically
extracted the vulnerable and patched versions of each method
in open-source projects, along with extensive meta-data such
as the corresponding CWEs, project information, and commit
data. These methods span multiple programming languages but
we only consider the C/C++ and Java methods in this work.

TABLE IV: Comparison of Real-World Datasets

Dataset Languages CVE Metadata Two-Sided Multi-Lang

BigVul [34] C/C++ ✓ ✗ ✗
Reveal [35] C/C++ ✗ ✗ ✗
DiverseVul [36] C/C++ ✗ ✓ ✗
DeepVD [37] C/C++ ✗ ✗ ✗

CVEFixes [32] C/C++, Java, ... ✓ ✓ ✓

B. Metrics
To evaluate the effectiveness of each tool, we use the

standard metrics used for classification problems. In this
work, a true positive represents a case when a tool detects
a true vulnerability. In contrast, a false positive is when the
tool detects a vulnerability that is not exploitable. True and
false negatives are defined analogously. We describe each
metric in the context of vulnerability detection.
• Accuracy: Accuracy measures how often the tool makes a

correct prediction, i.e., whether a code snippet is vulnerable
or not. It is computed as: True Positives + True Negatives

#Samples .

• Precision: Precision represents what proportion of cases that
a tool detects as a vulnerability is a correct detection. It is
computed as: True Positives

True Positives + False Positives .
• Recall: Recall represents what proportion of vulner-

abilities the tool can detect. It is computed as:
True Positives

True Positives + False Negatives .
• F1 score: The F1 score is a harmonic mean of precision

and recall. It is computed as: 2 ∗ Precision * Recall
Precision + Recall .

C. Large Language Models

We choose the most popular state-of-the-art pre-trained
Large Language Models (LLMs) for our evaluation.
We choose three closed-source models (GPT-4, GPT-3.5
and Gemini-1.5-Flash) and thirteen open-source models
from the Codellama-x, Llama-3.1-x, Mistral-Codestral-x,
DeepSeekCoder-x, Qwen2.5-x and Qwen2.5-Coder-x series.
We use the “Instruct” variants of the models wherever appli-
cable since they are fine-tuned to follow user instructions and
hence can better adapt to specific reasoning tasks. We access
the GPT-x models and Gemini-1.5-Flash using the OpenAI
and Google Gemini APIs respectively and use the Hugging
Face APIs [38] to access the open-source models. Table V
presents more details about the models.

TABLE V: Details of LLMs (increasing order of size)
Model Model Version Size Context Size

Qwen-2.5C-1.5B qwen2.5-coder-1.5b 1.5B 128K
Qwen-2.5C-7B qwen2.5-coder-7b 7B 128K
CodeLlama-7B Codellama-7b-instruct 7B 16K
DSCoder-7B deepseekcoder-7b 7B 4K
Llama-3.1-8B llama-3.1-8b 8B 128K
CodeLlama-13B CodeLlama-13B-Instruct 13B 16K
Qwen-2.5-14B qwen2.5-14b 14B 128K
DSCoder-15B deepseekcoder-v2-15b 33B 128K
Codestral-22B mistral-codestral-22b 22B 32K
Qwen-2.5-32B qwen2.5-32b 32B 128K
DSCoder-33B deepseekcoder-33b 33B 16K
CodeLlama-34B CodeLlama-34B-Instruct 34B 16K
Llama-3.1-70B llama-3.1-70b 70B 128K
Gemini-1.5-Flash gemini-1.5-flash N/A 1M
GPT-3.5 gpt-3.5-turbo-0613 N/A 4K
GPT-4 gpt-4-0613 N/A 8K

D. Prompting Strategies for LLMs

We explore various prompting strategies that can assist
LLMs in predicting if a given code snippet is vulnerable.
The LLMs discussed in this study support chat interactions
with two major types of prompts: the system prompt can be
used to set the context for the entire conversation while user
prompts can be used to provide specific details throughout
the chat session. We include a system prompt at the start
of each input to describe the task and expected structure of
the response. Since persona assignment has been shown to
improve the performance of GPT-4 on specialized tasks [39],
we add the line “You are a security researcher, expert in
detecting security vulnerabilities” at the start of every system
prompt to assign a persona of a Security Researcher to the
model. The system prompt for all experiments ends with the
statement “Provide response only in the following format:”

followed by an expected structure of the response from the
model. The system prompt is followed by a user prompt
that varies across the various prompting strategies. In all our
experiments, we incorporate the target code snippet into the
user prompt without any changes.

We construct three different prompting strategies:
1) Basic prompt: We design a very simple prompt (shown

in Listing 4 in the Appendix) to test if the model can take
a target code snippet as input and detect if it is vulnerable
and determine the correct CWE as well. The prompt begins
with the message “Is the following code snippet prone to any
security vulnerability?” followed by the code snippet.

TABLE VI: Dataset Processing and Selection

Steps OWASP Juliet Juliet CVEFixes CVEFixes Total
C/C++ Java C/C++ Java

Original 2740 128,198 56,162 19,576 3926 210,602
Filtering 2740 81,280 35,940 19,576 3926 144,002
Top 25 CWE 1478 11,766 8,506 12,062 1810 23,560
Random Selection 1000 1000 1000 1000 1000 5000

2) CWE specific prompt: The CWE specific prompt is
presented in Listing 5 in the Appendix. This prompt is similar
to the Basic prompt except that it asks the model to predict if
the given code snippet is vulnerable to a specific target CWE.
Hence, the user prompt starts with “Is the following code
snippet prone to <CWE>?” followed by the code snippet. For
instance, for CWE-476, the user prompt would start with “Is
the following code snippet prone to CWE-476 (NULL Pointer
Dereference)?” followed by the target code snippet.

3) Dataflow analysis-based prompt: Dataflow analysis is
used by several static analysis tools to infer if there exists
an unsanitized path from a source to a target node. Further,
prior literature has shown step-by-step instructions can often
elicit better reasoning from LLMs [40]. Motivated by these
observations, we designed the CWE-DF prompt (shown in
Listing 6 in Appendix) that prompts the model to simulate
a source-sink-sanitizer-based dataflow analysis on the target
code snippet before predicting if it is vulnerable. Naturally,
this prompt is costlier since it generates more tokens than the
other prompts. We provide the full prompts in Appendix B.

4) Other prompting strategies: We also tried other
prompting strategies such as Few-shot prompting
and Chain-of-thought prompting. In the few-shot
prompting setup, we include two examples of the task (one
with a vulnerability and one without) in the CWE specific
prompt before providing the target code snippet. With Chain-
of-thought prompting, we prompt the model to generate a
reasoning chain before the final answer by adding a “Let’s
think step-by-step” statement at the end of the CWE specific
prompt. Our initial experiments with GPT-4 prompted using
these techniques did not yield results better than the Dataflow
analysis-based prompt on 100 random samples from two
datasets. Hence, we do not include these prompts in this study.
We refer readers to Appendix C for more details.

Fig. 1: Effectiveness of LLMs in Predicting Security Vulnerabilities in Java and C/C++ (highest accuracy and F1 scores per
model per dataset, across all prompting strategies).

E. Dataset Processing and Selection

We preprocess each dataset before evaluation by removing
or anonymizing information such as commits, benchmark IDs,
or vulnerability names that may provide obvious hints about
the vulnerability. We also skip benchmarks that are spread
across multiple files, due to limitations of prompt size. We
only consider samples corresponding to vulnerability types
(CWEs) listed in MITRE’s Top 25 Most Dangerous Software
Weaknesses [41]. We then filter code snippets with more than
2048 tokens due to prompt size limitations and randomly
sample 500 vulnerable and 500 non-vulnerable samples per
dataset. Table VI presents the details of our selection stages.
We provide more details for each dataset in Appendix A.

F. Experimental Setup

Experiments with closed-source models. We use the Ope-
nAI public API’s ChatCompletions endpoint to perform
the experiments with GPT-3.5 and GPT-4. We use Google’s
Gemini API for the experiments with Gemini-1.5-Flash.
Experiments with open-source models. We run all experi-
ments with the open-source LLMs using the HuggingFace API
on a cluster with A100, A6000, and RTX 2080 GPUs.

In all our experiments, we set the sampling temperature to 0
for obtaining deterministic predictions, the maximum number
of tokens to 1024, and use the default values for all other
parameters. We use the top-1 predictions for evaluation.

III. RESULTS

A. RQ1: Effectiveness of LLMs

We evaluate the performance of pre-trained LLMs on five
open-source datasets discussed in Section II-A. Figure 1
presents the best accuracy and F1 scores (across prompts) of
the 16 models from Table V on all datasets. The more detailed
metrics for all prompts are presented in Appendix D.
Finding 1.1: Modest Vulnerability Detection Performance
Across LLMs. The best performing models and prompts per
dataset report an accuracy of 62.8% on average. The highest
of these is reported by Llama-3.1-70B (with CWE) on the
Juliet Java dataset (76%). The other best performing models
per dataset are: CodeLlama-13B on OWASP (60%), Gemini-
1.5-Flash on CVEFixes Java (57%), Qwen-2.5-14B on Juliet

C/C++ (65%) and Qwen-2.5-32B on CVEFixes C/C++ (56%).
This confirms that no model individually performs the best
across multiple datasets. Moreover, the best accuracies on
synthetic datasets are 10.5% higher on average than those on
the real-world datasets, suggesting that these models might not
be suitable for real-world vulnerability detection yet.
Finding 1.2: Performance does not improve with scale.
On the real-world datasets, Qwen-2.5-14B and Qwen-2.5-
32B report higher accuracies than the GPT-x models despite
being much smaller. We see many similar patterns across all
models studied implying that model scale does not impact
performance. Within the same model class, the GPT-x models
and the Llama-3.1-x models exhibit improvements in accuracy
as the size of the model increases on at least three datasets.
However, this is not observed in other model classes, i.e., the
Qwen-2.5C-x, Qwen-2.5-x, Codellama-x and the DSCoder-
x series. This is in stark contrast to other domains where
increasing model size leads to better performance. Listing 1
presents a representative example where CodeLlama-7B cor-
rectly predicts that an integer overflow vulnerability (CWE-
190) cannot occur in the given context while CodeLlama-13B
does not.

B. RQ2: Comparison of Prompting Strategies

Figure 2 presents the accuracy and F1 scores (averaged
across all LLMs) of the three prompting strategies across all
datasets. Overall, the three prompts perform similarly in terms
of accuracy on all datasets with CWE-DF reporting slightly
higher accuracies on the real-world datasets. Interestingly, the
CWE-DF prompt reports significantly higher F1 scores on
average than CWE and Basic prompt on the real-world datasets
(by upto 0.18 on CVEFixes C/C++ and 0.14 on CVEFixes
Java). Furthermore, CWE-DF reports the lowest variance in
accuracies and F1 scores across models, as suggested by the
standard deviation bars in Figure 2. On the other hand, the
Basic prompt reports the highest variance in F1 scores. We
next highlight qualitative differences between prompts:
Finding 2.1: Specifying the CWE in the prompt reduces
false alarms. Table VII presents the percentage of samples
where the Basic prompt predicts the correct CWE, averaged
across datasets for 4 models. We observe that the Basic prompt

private void func() throws Throwable {
int data;
switch (5) {
case 6:

data = 0; break; // Hardcoded values in
data↪→

default:
data = 2; break; // Hardcoded values in

data↪→

}
switch (7) {
case 7: // POTENTIAL FLAW: Integer Overflow

int result = (int)(data + 1); // But no
overflow due to hardcoded values in
data

↪→

↪→

IO.writeLine("result: " + result); break;
default:

IO.writeLine("fixed string"); break;

Codellama-7B’s response: The code snippet does not
contain any obvious security vulnerabilities. ✓

Codellama-13B’s response: The integer overflow oc-
curs when the value of ‘data’ exceeds the maximum
value that can be stored in an integer, causing the value
to wrap around to a negative number... potentially allow
an attacker to execute arbitrary code. ✗

Listing 1: CodeLlama-7B correctly predicts this code is not
vulnerable to Integer Overflow but CodeLlama-13B does not.

detects incorrect CWEs in > 60% and > 53% of all Java and
C/C++ samples across models. We further manually inspected
10 vulnerable and 10 non-vulnerable samples from Juliet Java
where GPT-4 with Basic prompt is incorrect. In only 4 or
the 20 samples, the Basic prompt predicts a plausible CWE.
However, these CWEs are unlikely due to the context. For
example, it predicts that a value read from an input stream can
be vulnerable if not validated (CWE-20) but this value is not

Fig. 2: Performance of different prompting strategies

used in a vulnerable context. The CWE specific prompt (i.e.,
the Basic prompt with CWE) improves or retains accuracy
over the Basic prompt on all 5 datasets. GPT-4 with the
CWE specific prompt not only correctly predicts all the 20
samples discussed above but also provides useful high-level
explanations for why the snippet is vulnerable/not vulnerable
in 18 / 20 samples. The 2 incorrect explanations are artifacts
of faulty reasoning or hallucination: for example, an Integer
Overflow due to addition to INT MAX in the function is
incorrectly attributed to subtracting from INT MIN in the
explanation. Based on these observations, specifying the CWE
in the prompt can be helpful in reducing incorrect predictions.

TABLE VII: Correct CWEs detected with Basic prompt (%)
Language (Avg.) GPT-4 GPT-3.5 CodeLlama-34B CodeLlama-13B

Java 0.41 0.34 0.37 0.38
C/C++ 0.29 0.31 0.33 0.35

Finding 2.2: Dataflow analysis identifies CWE-relevant
textual cues and provides actionable explanations. The
Dataflow analysis-based prompt (CWE-DF) performs better
than CWE specific prompt on the real-world datasets, CVE-
Fixes C/C++ and CVEFixes Java. We inspect 10 vulnerable
and 10 non-vulnerable samples from CVEFixes Java where
GPT-3.5 correctly predicts only with CWE-DF. We find that
the CWE-DF prompt leverages textual cues for sanitization
(e.g., csrftokenhandler() suggests protection from CSRF) in
16/20 samples that are missed by CWE specific prompt.

Further, CWE-DF responses are more useful in localizing
the vulnerability as it correctly predicts the correct sources and
sinks in 18 / 20 samples, sanitizers in 16 / 20 samples, and
unsanitized flows in all samples. Listing 2 presents a response
from GPT-4 using CWE-DF prompt that correctly identifies
the unsanitized flows between sources and sinks. We present
more CWE-DF examples in Appendix F.
Finding 2.3: CWE-DF identifies the correct sources and
sinks even when the final prediction is incorrect. We
also inspect 10 vulnerable and 10 non-vulnerable samples
from Juliet C/C++ where CWE-DF’s predictions are incorrect.
Surprisingly, the sources, sinks and sanitizers are correctly
identified in 17 / 20 samples but the unsanitized flows are
incorrect in 12 / 20 samples. Hence, the final predictions are
incorrect only due to erroneous reasoning about the snippet /
false assumptions about the CWE. Listing 3 presents an exam-
ple where the vulnerability is not detected but the sources and
sinks are correctly identified. This suggests that the CWE-DF
prompt can be used to accurately identify sources/sinks/sani-
tizers and other dataflow analysis techniques can be used to
reason about unsanitized flows to predict the vulnerability.

C. RQ3: Performance of LLMs across CWEs

We next evaluate how the LLMs perform on different
classes of security vulnerabilities (CWEs). Because the CWE-
wise distribution of vulnerable and non-vulnerable samples can
be imbalanced, we compute balanced accuracy for each CWE
(for ease of presentation, we refer to it as accuracy henceforth

// Code snippet prone to CWE-78 (OS Command
Injection)↪→

// Unverified data from socket is used as an
argument to _execvp↪→

void func(){
char dataBuffer[100] = "dir ";
char *data = dataBuffer; size_t dataLen =

strlen(data);↪→

int recvResult; SOCKET connectSocket =
INVALID_SOCKET;↪→

do {// setup socket and receive user input
conn = socket(AF_INET, SOCK_STREAM,

IPPROTO_TCP);↪→

recvResult = recv (conn, (char *)(data +
dataLen), sizeof(char) * (100 - dataLen
- 1), 0)};

↪→

↪→

// missing validation of recvResult
data[dataLen + recvResult / sizeof(char)] =

'\0';↪→

} while (0)
char *args[] = {"%WINDIR%\\system32\\cmd.exe",

"/c", data , NULL};↪→

_execvp ("cmd.exe", args);

}

GPT-4’s response: The data received from the socket
connection is directly used in the _execvp function
without proper sanitization. This could allow an attacker
to inject malicious commands. ✓

Listing 2: GPT-4 (CWE-DF) detects that this snippet is prone
to OS Command Injection due to unsanitized paths from a
source to sink . CodeQL does not detect this vulnerability.

in this section). For each dataset and model, we consider the
best-performing prompt for the analysis and only report CWEs
with at least 10 samples. Figure 3 presents the CWE-wise
distribution of accuracies on the real-world datasets, CVEFixes
Java and CVEFixes C/C++. Figure 4 reports the accuracies on
the synthetic datasets, OWASP, Juliet Java and Juliet C/C++.
Finding 3.1: LLMs perform well on vulnerabilities that
do not require additional context. These CWEs include OS
Command Injection (CWE-78), Out-of-bounds Read / Write
(CWE-125, CWE-787), Null Pointer Dereference (CWE-476),
Cross-site Scripting (CWE-79), SQL Injection (CWE-89) and
Incorrect Authorization (CWE-863). The higher performance
on these vulnerabilities can be attributed to the fact that these
are fairly self-contained and little additional context is needed
to detect them. For example, 4/16 LLMs report accuracies
> 60% on Incorrect Authorization (CWE-863) on CVEFixes
Java it is easier to validate if an implemented authorization
check is correct or not. On the other hand, no LLMs report
high accuracies on Missing Authorization (CWE-862) since
it’s not known if an input parameter has been authorized
outside the context of the target method and more context is
hence needed to detect this vulnerability class. The following
summarizes how LLMs perform on these CWEs:
• OS Command Injection (CWE-78) sees the highest perfor-

mance across models and datasets with >60% accuracies
reported by 5/16 LLMs on CVEFixes Java and 11/16

LLMs on CVEFixes C/C++. Llama-3.1-70B reports the best
performance on CWE-78 with accuracies 64% and 78% on
CVEFixes Java and CVEFixes C/C++ respectively.

• Llama-3.1-8B and GPT-4 perform extremely well on Out-
of-bounds Write (CWE-787) with accuracies of 89% and
79% on CVEFixes Java and CVEFixes C/C++ respectively
and on Out-of-bounds Read (CWE-125) with accuracies of
84% and 78% respectively. Moreover, accuracies over 60%
are reported on CVEFixes Java by 5/16 LLMs for CWE-125
and 4/16 LLMs for CWE-787.

• NULL Pointer Dereference (CWE-476) sees accuracies
higher than 60% by 3/16 LLMs on CVEFixes C/C++,
7/16 on Juliet C/C++ and 11/16 on OWASP. Interestingly,
DSCoder-7B performs the best on all three datasets with
accuracies of 63%, 88% and 83% respectively.

• GPT-3.5 reports the highest accuracy of 70% on SQL
Injection (CWE-89) on CVEFixes Java and 7/16 LLMs
report accuracies over 60%. Surprisingly, all LLMs report
accuracies <60% on the same CWE on synthetic datasets
(OWASP and Juliet Java).

• Qwen-2.5-32B reports high accuracies of 67% and 66% on
Cross-Site Scripting (CWE-79) on OWASP and CVEFixes
Java respectively. Accuracies over 60% are reported by 3/16
LLMs on CVEFixes Java and 11/16 LLMs on OWASP.

Finding 3.2: Poor performance on real-world C/C++ is due
to missing global context. We see that the performance of all
LLMs on vulnerabilities in CVEFixes C/C++ is worse than
that on the same CWEs in CVEFixes Java and Juliet C/C++.
While GPT-4 and Llama-3.1-8B perform extremely well on
the Out-of-bounds Read / Write vulnerabilities in CVEFixes
Java as discussed above, they report accuracies < 53% for
these CWEs on the CVEFixes C/C++ dataset. In fact, no
LLMs report accuracies > 60% for these CWEs on CVEFixes
C/C++. We attribute this disparity to the nature of these
vulnerabilities in the two languages: Out-of-bounds Reads /
Writes in CVEFixes C/C++ require reasoning about pointers
and structs which requires more context about the structs and
their members. In CVEFixes Java, on the other hand, these
vulnerabilities arise primarily due to illegal array indexing.
This issue does not emerge in Juliet C/C++ because all the
information about the pointers is presented in the snippet. We
present examples in Appendix G.
Finding 3.3: Some LLMs are better at detecting certain
CWEs. Concretely, the following LLMs report the best accu-
racies on certain CWEs across datasets:
• Llama-3.1-70B on OS Command Injection (CWE-78)
• DSCoder-7B on NULL Pointer Dereference (CWE-476)
• Qwen-2.5-32B on Cross-Site Scripting (CWE-79)
• Llama-3.1-8B and GPT-4 on Java Out-of-bounds Read-

/Write (CWE-125/787)

D. RQ4: LLMs vs Static Analysis Tools

Experiment setup. We next explore how the LLMs compare
against CodeQL. Since CodeQL requires building projects be-
fore analysis and the real-world datasets contain large projects,

(a) CVEFixes Java (b) CVEFixes C/C++

Fig. 3: Accuracy Across CWEs on real-world datasets.

we limit our focus to the three synthetic datasets, namely
OWASP, Juliet Java and Juliet C/C++. We use the official
CodeQL queries designed for the top 25 CWEs. Table VIII
presents results from CodeQL and the best performing LLM
on the three datasets: CodeLlama-13B on OWASP, Llama-3.1-
70B on Juliet Java and Qwen-2.5-14B on Juliet C/C++.
Finding 4.1: CodeQL performs better than the LLMs in
terms of accuracy on all three datasets. CodeQL reports
0.07 and 0.15 higher F1 than CodeLlama-13B on OWASP and
Llama-3.1-70B on Juliet Java respectively. However, Qwen-
2.5-14B reports a 0.11 higher F1 on Juliet C/C++.
Finding 4.2: LLMs perform better than CodeQL on certain
CWEs. A CWE-wise comparison of LLMs with CodeQL in
Figure 4 reveals that LLMs report higher accuracies on CWE-
22 (Path Traversal), CWE-78 (OS Command Injection), CWE-
476 (NULL Pointer Dereference), 416 (Use After Free) on at
least 2 / 3 datasets while CodeQL performs better on CWE-
190 (Integer Overflow) on 2 datasets. Concretely,
• CodeQL performs better than the LLMs on CWE-190 (In-

teger Overflow) with 11% and 21% higher accuracies than
Llama-3.1-70B on Juliet Java and Juliet C/C++ respectively.

• On the other hand, DSCoder-7B performs better than Cod-
eQL on CWE-476 (NULL Pointer Dereference) with 12%
higher accuracy on Juliet Java and only 1% lower accuracy
on Juliet C/C++. Moreover, 6 / 16 LLMs report accuracies
higher than CodeQL on CWE-476 from Juliet Java.

• While CodeQL reports an extremely high accuracy of 95%

on CWE-78 (OS Command Injection) with Juliet Java, it
is outperformed by CodeLlama-13B by 1% and Codestral-
22B by 7% on OWASP and Juliet C/C++ respectively.
Interestingly, 7 / 16 LLMs report higher accuracies (by upto
10%) at detecting CWE-22 (Path Traversal) on OWASP.

• Similarly, 3 LLMs perform better on CWE-416 (Use After
Free) from Juliet C/C++ with DSCoder-7B reporting a
whopping 24% higher accuracy than CodeQL.

Finding 4.3: CodeQL’s worse performance on some CWEs
can be attributed to the very specific manually-written
queries which may not cover all possible scenarios of the
vulnerability. For example, CodeQL only detects CWE-78
(OS Command Injection) in C/C++ snippets when there exist
system commands that take a string of arguments (execl).
This query cannot handle commands that take a list of ar-
guments (eg., _execvp). Listing 2 provides an example of
this scenario where CodeQL does not detect that the snippet
is prone to OS Command Injection but GPT-4 (CWE-DF)
correctly identifies _execvp as a vulnerable sink. Listing 3
presents an example where CodeQL correctly predicts that the
target snippet is vulnerable to Integer Overflow while GPT-4
with CWE-DF does not. However, the model correctly identi-
fies the sources, sinks and even unsanitized dataflows in this
case but fails to faithfully reason over them when predicting
the vulnerability. These examples support the observation from
Section III-B that LLMs can be used to identify sources and
sinks relevant to the target vulnerability (which can be missed

(a) OWASP (b) Juliet Java (c) Juliet C/C++

Fig. 4: Accuracy Across CWEs on synthetic datasets.

by manually written queries) while static analysis tools like
CodeQL can be used to reason over them. More examples are
presented in the Appendix E.

TABLE VIII: CodeQL vs. best performing LLM on syn-
thetic datasets (CodeLlama-13B on OWASP, Llama-3.1-70B
on Juliet Java, and Qwen-2.5-14B on Juliet C/C++)

Dataset/Model CodeQL Best performing LLM

A P R F1 A P R F1

OWASP 0.63 0.58 0.96 0.72 0.60 0.58 0.74 0.65
Juliet Java 0.94 0.92 0.95 0.94 0.76 0.71 0.89 0.79
Juliet C/C++ 0.72 0.99 0.44 0.61 0.65 0.60 0.89 0.72

E. RQ5: LLMs vs Deep Learning-Based Tools

We compare LLMs against two prior deep learning-based
approaches: 1) DeepDFA [10], which trains Graph Neural Net-
works using embeddings of control flow graphs and associated
data flow facts, and 2) LineVul [11], which is a transformed-
based model trained using token-based representation of code.
Experiment setup. Our main aim in this experiment is to
check the generalizability of these techniques on real-world
datasets beyond the datasets they are trained on. We use
CVEFixes C/C++ with the 1000 samples from our main
evaluation §III-A as the real-world test set. We train on three
different datasets:Juliet C/C++, CVEFixes C/C++ (excluding
samples in the test set) and BigVul [34](the original C/C++
dataset that these models were trained on). We use an 80/20
train-validation split while training on these datasets. We use
the DeepDFA and LineVul versions from DeepDFA’s latest

// Code snippet prone to CWE-190 (Integer Overflow)
// data is incremented without verifying if data <

INT_MAX↪→

static const int STATIC_CONST_FIVE = 5;
void f7909()
{

int64_t data;
data = 0LL;
if(STATIC_CONST_FIVE==5)
{

data = (int64_t) RAND64() ;
}
if(STATIC_CONST_FIVE==5)
{

{
++data;
int64_t result = data;

printLongLongLine (result);

}
}

}

GPT-4’s response:
Unsanitized Data Flows ✓
The data from RAND64() is directly used in
printLongLongLine() without any sanitization
or checks for integer overflow.)

Vulnerability analysis verdict ✗
vulnerability: NO (CWE-190)

Explanation ✗
The code does not perform any arithmetic operations
that could lead to an integer overflow. The only oper-
ation performed on the data variable is incrementing
it by one (++data), which is unlikely to cause an
integer overflow given that data is a 64-bit integer.

Listing 3: CodeQL correctly predicts Integer Overflow while
GPT-4 doesn’t. GPT-4, however, correctly identifies the
sources and sinks and the unsanitized paths.

artifact [42]. Table IX presents the results, averaged across
three runs.
Finding 5.1: DL-based approaches have limited effective-
ness on real-world datasets. DeepDFA and LineVul trained
on CVEFixes C/C++ training set report accuracies of 51% and
59% on CVEFixes C/C++ test set respectively while the best
performing LLM on this dataset, Qwen-2.5-32B, reports an
accuracy of 56%. This is in stark contrast to the performance
of these techniques on BigVul where they report accuracies
higher than 98%. Moreover, Qwen-2.5-32B reports an F1 score
of 0.65 which is 0.42 and 0.04 higher than DeepDFA and
LineVul respectively.
Finding 5.2: DL-based approaches do not generalize across
datasets. When trained on Juliet C/C++ or BigVul, both
DeepDFA and LineVul report accuracies and F1 scores lower

than Qwen-2.5-32B by upto 6% and 0.63 respectively.
Finding 5.3: LLMs are preferable over DL-based ap-
proaches due to low inference overheads and natural lan-
guage explanations. DeepDFA involves significant inference
overhead, due to the CFG extraction and dataflow analysis
steps. LLMs, however, can use the textual representation of
code and can operate on incomplete/partial programs. The
use of data-flow and control-flow information in DeepDFA
is evidently useful. We made similar observations with LLMs
when using the CWE-DF prompt. On the other hand, LineVul,
like LLMs, can leverage natural language information but has
a generalization problem. Finally, both DeepDFA and LineVul
provide binary labels and line numbers that are difficult to
interpret. LLMs can additionally provide explanations, which
are useful for further debugging (as shown in prior sections).

TABLE IX: Qwen-2.5-32B vs DeepDFA vs LineVul on CVE-
Fixes C/C++
Model Train/Prompt Test A P R F1

DeepDFA BigVul BigVul 0.98 0.53 0.92 0.67
LineVul BigVul BigVul 0.99 0.96 0.88 0.92

Qwen-2.5-32B CWE-DF CVEFixes C/C++ 0.56 0.54 0.81 0.65

DeepDFA CVEFixes C/C++ CVEFixes C/C++ 0.51 0.55 0.17 0.23
DeepDFA Juliet C/C++ CVEFixes C/C++ 0.53 0.53 0.65 0.58
DeepDFA BigVul CVEFixes C/C++ 0.52 0.52 0.76 0.62

LineVul CVEFixes C/C++ CVEFixes C/C++ 0.59 0.58 0.65 0.61
LineVul Juliet C/C++ CVEFixes C/C++ 0.50 0.50 0.91 0.64
LineVul BigVul CVEFixes C/C++ 0.50 0.63 0.01 0.02

IV. RELATED WORK

Static analysis tools for vulnerability detection. Tools such
as FlawFinder [43] and CppCheck [44] use syntactic and sim-
ple semantic analysis techniques to find vulnerabilities in C++
code. More advanced tools like CodeQL [5], Infer [45], and
CodeChecker [46] employ semantic analysis techniques and
can detect vulnerabilities in multiple languages. Static analysis
tools rely on manually crafted rules and precise specifications
of code behavior, which is difficult to obtain automatically. In
contrast, while LLMs cannot always reliably perform end-to-
end reasoning over code, we find that they are capable of
automatically identifying these specifications which can be
leveraged to improve static analysis-based detection tools.
Deep Learning-based vulnerability detection. Several
works have focused on using Deep Learning techniques for
vulnerability detection. Earlier works such as Devign [47],
Reveal [48], LineVD [49] and IVDetect [50] leveraged
Graph Neural Networks (GNNs) for modeling dataflow
graphs, control flow graphs, abstract syntax trees and
program dependency graphs. Other works explored alternate
model architectures: VulDeePecker [51] and SySeVR [52]
used LSTM-based models on slices and data dependencies
while Draper used Convolutional Neural Networks. Recent
works demonstrate that Transformer-based models fine-
tuned on the task of vulnerability detection can outperform
specialized techniques (CodeBERT, LineVul [11], UnixCoder).

DeepDFA [10] and ContraFlow [53] learn specialized
embeddings that can further improve the performance
of Transformer-based vulnerability detection tools. These
techniques, however, provide binary labels for vulnerability
detection and do not provide natural language explanations.

LLMs for automated software engineering. Recent ap-
proaches have demonstrated the effectiveness of LLMs on
software engineering tasks such as automated program re-
pair [13]–[15], test generation [16], [17], code evolution [18],
and fault localization [19]. However, unlike these approaches,
we find that scaling LLMs to larger sizes does not improve vul-
nerability detection abilities. [54] explore whether Language
Models fine-tuned on multi-class classification can perform
well where the classes correspond to groups of similar types
of vulnerabilities. In contrast, we study whether LLMs can
perform a much granular CWE-level classification through
prompting. Recent work combining LLMs with static analysis
to detect Use Before Initialization (UBI) bugs in the Linux
Kernel [55] supports our claims in Section III-D (but focuses
on a specific class of bugs). There are other concurrent studies
evaluating LLMs on vulnerability detection [24]–[28]. Table II
provides a comparison against these studies. Section III-A
corroborates the common finding from these studies that
LLMs do not perform well on real-world datasets. However,
to the best of our knowledge, our study is the first work
that qualitatively identifies prompts and vulnerability classes
where LLMs perform well (and often better than other tools).
Moreover, our study focuses on a larger/different class of state-
of-the-art LLMs, datasets, languages, and vulnerability classes.

V. THREATS TO VALIDITY

External. The choice of LLMs and datasets may bias our
evaluation and insights. To address this threat, we choose
multiple popular synthetic and real-world datasets across two
languages: Java and C++. We also choose both state-of-the-art
closed-source and open-source LLMs. However, our insights
may not generalize to other languages or datasets.

Internal. Owing to the non-deterministic nature of LLMs and
single experiment runs per benchmark, our observations may
be biased. To mitigate this threat, we use a temperature of 0
to ensure determinism across all LLMs. While this works well
for locally run CodeLlama models, it is well-known that GPT-
4 and GPT-3.5 might still return non-deterministic results.
However, this should balance out across datasets and over the
large number of benchmarks we evaluate on. Further, given
similar results across LLMs on real-world-datasets, we do not
expect significant changes with re-runs.

Our evaluation code and scripts may have bugs, which might
bias our results. Our manual analysis of results may lead
to erroneous inferences. To address this threat, multiple co-
authors reviewed the code regularly and actively fixed issues.
Further, multiple co-authors independently analyzed the results
and discussed them together to mitigate any discrepancies.

VI. CONCLUSION

In this work, we performed a comprehensive analysis of
LLMs for security vulnerability detection. Our study reveals
that both closed-source LLMs, such as GPT-4, and open-
source LLMs, like CodeLlama, perform modestly at vul-
nerability detection for both Java and C/C++. However, we
find specific vulnerability classes where LLMs excel (often
performing better than static analysis tools, such as CodeQL).
Moreover, we find that even in cases where the models
produce incorrect predictions, they are capable of identifying
relevant sources, sinks and sanitizers that can be used for
downstream dataflow analysis. Hence, we believe that an inter-
esting future direction is to develop neuro-symbolic techniques
that combine the intuitive reasoning abilities of LLMs with
symbolic tools such as logical reasoning engines and static
code analyzers for more effective and interpretable solutions.

REFERENCES

[1] 2022, https://nvd.nist.gov/vuln/detail/CVE-2022-3602.
[2] 2022, https://nvd.nist.gov/vuln/detail/CVE-2022-3786.
[3] M. Miller, “Microsoft: 70 percent of all security bugs

are memory safety issues,” https://www.zdnet.com/article/
microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/,
2019.

[4] V. J. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “Fuzzing: Art, science, and engineering,” arXiv preprint
arXiv:1812.00140, 2018.

[5] P. Avgustinov, O. de Moor, M. P. Jones, and M. Schäfer, “Ql: Object-
oriented queries on relational data,” in European Conference on Object-
Oriented Programming, 2016.

[6] Semgrep, “The semgrep platform,” https://semgrep.dev/, 2023.
[7] Semmle, “Vulnerabilities discovered by CodeQL,” https://securitylab.

github.com/advisories/, 2023.
[8] L. Leong, “Mindshare: When mysql cluster encounters taint

analysis,” https://www.zerodayinitiative.com/blog/2022/2/10/
mindshare-when-mysql-cluster-encounters-taint-analysis, 2022.

[9] GitHub, “The bug slayer,” 2023, https://securitylab.github.com/bounties.
[10] B. Steenhoek, H. Gao, and W. Le, “Dataflow analysis-inspired deep

learning for efficient vulnerability detection,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, 2024, pp.
1–13.

[11] M. Fu and C. Tantithamthavorn, “Linevul: A transformer-based line-
level vulnerability prediction,” in 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories (MSR). IEEE, 2022.

[12] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder,
M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P.
Such, D. W. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, I. Babuschkin, S. A. Balaji, S. Jain,
A. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. M.
Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” ArXiv, vol. abs/2107.03374,
2021.

[13] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in
the era of large pre-trained language models,” in Proceedings of the
45th International Conference on Software Engineering (ICSE 2023).
Association for Computing Machinery, 2023.

[14] H. Joshi, J. C. Sanchez, S. Gulwani, V. Le, G. Verbruggen, and
I. Radiček, “Repair is nearly generation: Multilingual program repair
with llms,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2023.

[15] C. S. Xia and L. Zhang, “Less training, more repairing please: revisiting
automated program repair via zero-shot learning,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 959–
971.

[16] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in International conference on software engineering (ICSE),
2023.

[17] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, 2023, pp. 423–435.

[18] J. Zhang, P. Nie, J. J. Li, and M. Gligoric, “Multilingual code co-
evolution using large language models,” in Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2023, pp. 695–707.

[19] A. Z. Yang, C. Le Goues, R. Martins, and V. Hellendoorn, “Large
language models for test-free fault localization,” in Proceedings of the
46th IEEE/ACM International Conference on Software Engineering,
2024, pp. 1–12.

[20] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yo-
gatama, M. Bosma, D. Zhou, D. Metzler, E. H. hsin Chi, T. Hashimoto,
O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent abilities of large
language models,” Trans. Mach. Learn. Res., vol. 2022, 2022.

[21] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T.
Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early
experiments with gpt-4,” 2023.

[22] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[23] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[24] X. Zhou, T. Zhang, and D. Lo, “Large language model for vulnerability
detection: Emerging results and future directions,” in Proceedings of the
2024 ACM/IEEE 44th International Conference on Software Engineer-
ing: New Ideas and Emerging Results, 2024, pp. 47–51.

[25] Z. Gao, H. Wang, Y. Zhou, W. Zhu, and C. Zhang, “How far have
we gone in vulnerability detection using large language models,” arXiv
preprint arXiv:2311.12420, 2023.

[26] B. Steenhoek, M. M. Rahman, M. K. Roy, M. S. Alam, E. T. Barr, and
W. Le, “A comprehensive study of the capabilities of large language
models for vulnerability detection,” arXiv preprint arXiv:2403.17218,
2024.

[27] S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and G. Stringhini,
“Llms cannot reliably identify and reason about security vulnerabilities
(yet?): A comprehensive evaluation, framework, and benchmarks,”
in 2024 IEEE Symposium on Security and Privacy (SP). Los
Alamitos, CA, USA: IEEE Computer Society, may 2024, pp. 862–
880. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SP54263.2024.00210

[28] Y. Ding, Y. Fu, O. Ibrahim, C. Sitawarin, X. Chen, B. Alomair,
D. Wagner, B. Ray, and Y. Chen, “Vulnerability detection with code
language models: How far are we?” arXiv preprint arXiv:2403.18624,
2024.

[29] 2023, https://owasp.org/www-project-benchmark.
[30] 2023, https://samate.nist.gov/SARD/test-suites/112.
[31] 2023, https://samate.nist.gov/SARD/test-suites/111.
[32] G. P. Bhandari, A. Naseer, and L. Moonen, “Cvefixes: automated

collection of vulnerabilities and their fixes from open-source software,”
Proceedings of the 17th International Conference on Predictive Models
and Data Analytics in Software Engineering, 2021.

[33] T. Boland and P. E. Black, “Juliet 1.1 c/c++ and java test suite,”
Computer, 2012.

[34] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code
vulnerability dataset with code changes and cve summaries,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, ser. MSR ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 508–512. [Online]. Available:
https://doi.org/10.1145/3379597.3387501

[35] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet?” IEEE Transactions
on Software Engineering, vol. 48, no. 9, pp. 3280–3296, 2021.

[36] Y. Chen, Z. Ding, L. Alowain, X. Chen, and D. A. Wagner, “Diversevul:
A new vulnerable source code dataset for deep learning based vulner-
ability detection,” Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, 2023.

[37] W. Wang, T. N. Nguyen, S. Wang, Y. Li, J. Zhang, and A. Yadavally,
“Deepvd: Toward class-separation features for neural network vulnera-
bility detection,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), 2023.

[38] 2023, https://huggingface.co/.
[39] L. Salewski, S. Alaniz, I. Rio-Torto, E. Schulz, and Z. Akata, “In-context

impersonation reveals large language models’ strengths and biases,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[40] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[41] 2023. [Online]. Available: https://cwe.mitre.org/top25/archive/2023/
2023 top25 list.html

[42] 2024, https://github.com/ISU-PAAL/DeepDFA/tree/master.
[43] 2023. [Online]. Available: https://dwheeler.com/flawfinder
[44] 2023, https://cppcheck.sourceforge.io/.
[45] 2023, https://fbinfer.com/.
[46] 2023, https://github.com/Ericsson/codechecker.

https://nvd.nist.gov/vuln/detail/CVE-2022-3602
https://nvd.nist.gov/vuln/detail/CVE-2022-3786
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://semgrep.dev/
https://securitylab.github.com/advisories/
https://securitylab.github.com/advisories/
https://www.zerodayinitiative.com/blog/2022/2/10/mindshare-when-mysql-cluster-encounters-taint-analysis
https://www.zerodayinitiative.com/blog/2022/2/10/mindshare-when-mysql-cluster-encounters-taint-analysis
https://securitylab.github.com/bounties
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00210
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00210
https://owasp.org/www-project-benchmark
https://samate.nist.gov/SARD/test-suites/112
https://samate.nist.gov/SARD/test-suites/111
https://doi.org/10.1145/3379597.3387501
https://huggingface.co/
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://github.com/ISU-PAAL/DeepDFA/tree/master
https://dwheeler.com/flawfinder
https://cppcheck.sourceforge.io/
https://fbinfer.com/
https://github.com/Ericsson/codechecker

[47] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” in Neural Information Processing Systems,
2019.

[48] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet?” IEEE Transactions
on Software Engineering, vol. 48, pp. 3280–3296, 2020.

[49] D. Hin, A. Kan, H. Chen, and M. A. Babar, “Linevd: Statement-level
vulnerability detection using graph neural networks,” 2022 IEEE/ACM
19th International Conference on Mining Software Repositories (MSR),
2022.

[50] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021.

[51] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: A
deep learning-based fine-grained vulnerability detector,” IEEE Transac-
tions on Dependable and Secure Computing, 2020.

[52] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, S. Wang, and J. Wang,
“Sysevr: A framework for using deep learning to detect software vul-
nerabilities,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, pp. 2244–2258, 2018.

[53] X. Cheng, G. Zhang, H. Wang, and Y. Sui, “Path-sensitive code
embedding via contrastive learning for software vulnerability detection,”
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022.

[54] C. Thapa, S. I. Jang, M. E. Ahmed, S. A. Çamtepe, J. Pieprzyk, and
S. Nepal, “Transformer-based language models for software vulnera-
bility detection,” Proceedings of the 38th Annual Computer Security
Applications Conference, 2022.

[55] H. Li, Y. Hao, Y. Zhai, and Z. Qian, “Enhancing static analysis for
practical bug detection: An llm-integrated approach,” Proceedings of
the ACM on Programming Languages, vol. 8, no. OOPSLA1, 2024.

VII. APPENDIX

A. Dataset Processing and Selection

We perform a data processing and cleaning step for each
dataset before evaluating them with LLMs.
OWASP. We remove or anonymize information in OWASP
benchmarks that may provide obvious hints about the vulner-
ability in a file. For instance, we change package, variable
names, and strings such as “owasp”, “testcode”, and “/sqli-
06/BenchmarkTest02732” to other pre-selected un-identifying
names such as “pcks”, “csdr”, etc. We remove all comments in
the file because they may explicitly highlight the vulnerable
line of code or may have irrelevant text (such as copyright
info), which may leak information. These changes, however,
do not change the semantics of the code snippets.
Juliet Java and C/C++. Similar to OWASP, we
remove all comments and transform all identifiers
that leak identifying information in all test cases in
the Juliet benchmark. For instance, we change “class
CWE80 XSS CWE182 Servlet connect tcp 01” to “class
MyClass”. The Juliet benchmark provides the vulnerable
(named as “bad”) and non-vulnerable (named as “good*”)
methods in the same file. For easier evaluation, we perform a
pre-processing step to split each file into two, each containing
either a vulnerable or non-vulnerable method. Juliet also
contains special benchmarks that have dependencies across
multiple (2-5) files. We skip these benchmarks because they
are typically too big to fit into the LLM prompt. Hence, the
number of test cases after the data processing step in Juliet
is reduced (as shown in Table VI).
CVEFixes. For each CVE, CVEFixes provides the methods
that were involved in the fix commit. It also includes the
method code in the parent commit, i.e., the method version
before the fix. We collect all methods in the fix commit and
the parent commit and label them as vulnerable and non-
vulnerable, respectively. Similar to other datasets, we also
remove all comments in the method code. While CVEFixes
contains methods across multiple programming languages, we
only collect C/C++ and Java methods for our study.

B. Prompting Strategies

The Basic prompt is presented in Listing 4, CWE specific
prompt in Listing 5 and Dataflow analysis-based prompt in
Listing 6.

C. Other Prompting Strategies

In addition to the prompting strategies presented
in our main evaluation, we considered other popular
prompting strategies such as Few-shot prompting
and Chain-of-thought prompting in a limited
experimental setting. For the few-shot prompt (CWE-Few-
shot), we included two examples of the task (one with a
vulnerability and one without) in the CWE specific prompt
before providing the target code snippet. For the chain-of-
thought prompt (CWE-CoT), we explicitly ask the model to
provide a reasoning chain before the final answer by adding

System: You are a security researcher, expert in
detecting security vulnerabilities.
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type:
<CWE ID> | vulnerability name: <CWE NAME> |
explanation: <explanation for prediction>.
Use N/A in other fields if there are no
vulnerabilities. Do not include anything else in
response.

User: Is the following code snippet prone to any
security vulnerability?
<CODE_SNIPPET>
Response:

Listing 4: Basic LLM Prompt

System: [Same as above]
User: Is the following code snippet prone to <CWE>?
<CODE_SNIPPET>
Response:

Listing 5: CWE-specific LLM Prompt

System: You are a security researcher, expert in
detecting security vulnerabilities. Carefully
analyze the given code snippet and track the data
flows from various sources to sinks. Assume that
any call to an unknown external API is unsanitized.

Please provide a response only in the following
itemized OUTPUT FORMAT. Use N/A in other fields if
there are no vulnerabilities. DO NOT INCLUDE
ANYTHING ELSE IN YOUR RESPONSE.
<OUTPUT FORMAT>
Data flow analysis of the given code snippet:
1. Sources:
<numbered list of input sources>
2. Sinks:
<numbered list of output sinks>
3. Sanitizers:
<numbered list of sanitizers, if any>
4. Unsanitized Data Flows:
<numbered list of data flows that are not sanitized
in the format (source, sink, why this flow could be
vulnerable)>
5. Final Vulnerability analysis verdict:
vulnerability: <YES or NO> | vulnerability type:
<CWE_ID> | vulnerability name: <NAME_OF_CWE> |
explanation: <explanation for prediction>
</OUTPUT FORMAT>
User: Is the following code snippet prone to <CWE>?
<CODE_SNIPPET>
Response:

Listing 6: Dataflow analysis-based LLM Prompt

a “Let’s think step-by-step” statement at the end of the CWE
specific prompt. The CWE-CoT and CWE-Few-shot prompts
are provided in Listing 7 and Listing 8 respectively.

Table X and Table XI present the results from GPT-4
with various prompting strategies on a random subset of 100
samples of the Juliet Java and CVEFixes C/C++ datasets re-
spectively. The CWE-DF prompt reports the highest accuracy
of 69% and the highest F1 score of 0.75 on the Juliet Java
dataset. The CWE-DF prompt reports a 0.05 higher F1 score

System: [Same as the Basic prompt]
User: Is the following code snippet prone to <CWE>?
<CODE_SNIPPET>
Let's think step by step.
Response:

Listing 7: CWE-CoT LLM Prompt

System: [Same as the Basic prompt]
User:

Query: Is the following code snippet prone to
<CWE1>?
Code snippet: <CODE_SNIPPET1>

Vulnerability analysis verdict: $ vulnerability:
YES | vulnerability type: <CWE1> . . .

Query: Is the following code snippet prone to
<CWE2>?
Code snippet: <CODE_SNIPPET2>

Vulnerability analysis verdict: $ vulnerability: NO
| vulnerability type: N/A . . .

Query: Is the following code snippet prone to <CWE>?
Code snippet: <CODE_SNIPPET>

Vulnerability analysis verdict:

Listing 8: CWE-Few-shot LLM Prompt

than the CWE-CoT prompt and a 0.03 higher F1 score than
the CWE-Few-shot prompt. This difference is much more
prominent on the CVEFixes C/C++ dataset where the CWE-
DF prompt reports a 0.34 higher F1 score than the CWE-
CoT prompt and a 0.31 higher F1 score than the CWE-Few-
shot prompt. Moreover, the CWE-Few-shot prompt reported
a 0.2 lower F1 score than the CWE specific prompt on
the CVEFixes C/C++ dataset while requiring more tokens.
Our analysis of the few-shot prompts suggests that providing
more examples may not be a useful strategy for vulnerability
detection. Because the potential set of vulnerable code patterns
is quite large, the provided examples hardly make a difference
to LLMs’ reasoning abilities. Hence, it may be more useful
to use prompts that instead elicit reasoning or explanations of
some kind before detecting if the given snippet is vulnerable.
The CWE-CoT prompt, however, does not help with reasoning
always, as it either performed at par or worse than the Dataflow
analysis-based prompt.

TABLE X: All prompting strategies on 100 samples from
Juliet Java.

Model Prompt Metrics

A P R F1

GPT-4 CWE 0.65 0.58 0.96 0.72
GPT-4 CWE-Few-shot 0.65 0.58 0.94 0.72
GPT-4 CWE-CoT 0.69 0.64 0.79 0.70
GPT-4 CWE-DF 0.69 0.61 0.96 0.75

Learning from these experiments, we selected the CWE
specific prompt, Dataflow analysis-based prompt, in addition

TABLE XI: All prompting strategies on 100 samples from
CVEFixes C/C++.

Model Prompt Metrics

A P R F1

GPT-4 CWE 0.55 0.54 0.58 0.56
GPT-4 CWE-Few-shot 0.49 0.38 0.34 0.36
GPT-4 CWE-CoT 0.52 0.37 0.30 0.33
GPT-4 CWE-DF 0.56 0.56 0.83 0.67

to the Basic prompt, for our main evaluation with LLMs.

D. Detailed metrics across all LLMs and Datasets

Table XII presents the metrics for all LLMs and Datasets
across all prompts.

E. More examples of CodeQL vs. LLMs

// Code snippet prone to CWE-476 (NULL Pointer
Dereference)↪→

// Both the conditions are evaluated due to the
bitwise & operator↪→

if(globalReturnsTrue())

{

twoIntsStruct *twoIntsStructPointer = NULL;

if ((twoIntsStructPointer != NULL)
&

(twoIntsStructPointer->intOne == 5))
{

printLine("intOne == 5");
}

}

GPT-4’s response: The pointer
twoIntsStructPointer is initialized as NULL
and then checked if it’s not NULL before dereferencing.
However, the pointer is not assigned any value other
than NULL, so it’s not actually a risk of NULL pointer
dereference. ✗

Listing 9: CodeQL correctly predicts Null Pointer Dereferenc-
ing while GPT-4 doesn’t. GPT-4, however, correctly identifies
the sources and sinks .

In Listing 9, the model incorrectly reasons about the san-
itization by overlooking the & which would cause both the
expressions to be evaluated. The identified sources and sinks
are correct, however.

F. Qualitative analysis of GPT-4 responses

We first present examples where the dataflow analysis from
the CWE-DF prompt is useful. Consider the code snippet in
Listing 10. In this snippet, the variable dir is indirectly being
used to create a directory via the dirToCreate variable.
GPT-4 correctly identifies that this path is not sanitized and
could be used to create a directory in otherwise restricted
locations. This could lead to CWE-22 (path traversal) as

TABLE XII: Effectiveness of LLMs in Predicting Security Vulnerabilities (Java and C++). The highest accuracy and F1 scores
(as well as ones within 0.1 range of the highest values) for each dataset are highlighted in blue.

Model Prompt OWASP Juliet Java CVEFixes Java Juliet C/C++ CVEFixes C/C++

A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

Qwen-2.5C-1.5B Basic 0.50 0.50 0.82 0.62 0.50 0.50 0.99 0.66 0.49 0.49 0.68 0.57 0.49 0.50 0.99 0.66 0.51 0.51 0.78 0.61
Qwen-2.5C-1.5B CWE 0.49 0.49 0.79 0.61 0.50 0.50 1.00 0.67 0.51 0.50 0.92 0.65 0.50 0.50 1.00 0.67 0.51 0.50 0.89 0.64
Qwen-2.5C-1.5B CWE-DF 0.47 0.48 0.75 0.59 0.55 0.54 0.67 0.60 0.50 0.50 0.80 0.62 0.57 0.55 0.79 0.65 0.52 0.51 0.77 0.62

Qwen-2.5C-7B Basic 0.50 0.50 1.00 0.67 0.50 0.50 0.99 0.67 0.47 0.48 0.79 0.60 0.50 0.50 1.00 0.67 0.50 0.50 0.95 0.66
Qwen-2.5C-7B CWE 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.48 0.49 0.53 0.51 0.50 0.50 1.00 0.66 0.51 0.50 0.77 0.61
Qwen-2.5C-7B CWE-DF 0.54 0.52 1.00 0.68 0.52 0.51 0.99 0.67 0.52 0.52 0.49 0.50 0.50 0.50 0.99 0.67 0.54 0.53 0.62 0.57

CodeLlama-7B Basic 0.51 0.87 0.03 0.05 0.51 0.59 0.09 0.15 0.47 0.29 0.04 0.06 0.50 0.50 0.12 0.19 0.49 0.33 0.02 0.03
CodeLlama-7B CWE 0.50 0.50 1.00 0.67 0.52 0.51 0.99 0.67 0.51 0.51 0.84 0.63 0.51 0.50 0.99 0.67 0.50 0.50 0.85 0.63
CodeLlama-7B CWE-DF 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.51 0.50 0.97 0.66

DSCoder-7B Basic 0.50 0.50 0.99 0.66 0.57 0.56 0.69 0.62 0.48 0.47 0.30 0.36 0.57 0.55 0.77 0.64 0.49 0.47 0.24 0.32
DSCoder-7B CWE 0.56 0.54 0.87 0.66 0.54 0.53 0.75 0.62 0.48 0.43 0.15 0.22 0.58 0.56 0.70 0.62 0.51 0.53 0.18 0.27
DSCoder-7B CWE-DF 0.51 0.50 0.98 0.66 0.52 0.51 0.91 0.65 0.49 0.50 0.90 0.64 0.50 0.50 0.98 0.66 0.53 0.52 0.90 0.66

Llama-3.1-8B Basic 0.50 0.50 1.00 0.67 0.48 0.49 0.94 0.65 0.52 0.51 0.80 0.62 0.49 0.49 0.97 0.65 0.52 0.51 0.92 0.66
Llama-3.1-8B CWE 0.53 0.52 1.00 0.68 0.52 0.51 0.97 0.67 0.53 0.56 0.29 0.38 0.54 0.52 0.98 0.68 0.55 0.55 0.58 0.56
Llama-3.1-8B CWE-DF 0.49 0.50 0.93 0.65 0.50 0.50 0.97 0.66 0.51 0.50 0.93 0.65 0.50 0.50 0.99 0.67 0.50 0.50 0.95 0.65

CodeLlama-13B Basic 0.60 0.58 0.74 0.65 0.48 0.48 0.41 0.44 0.50 0.51 0.08 0.14 0.47 0.47 0.51 0.49 0.50 0.50 0.07 0.12
CodeLlama-13B CWE 0.52 0.51 0.98 0.67 0.50 0.50 0.89 0.64 0.48 0.47 0.29 0.36 0.53 0.51 0.98 0.67 0.53 0.52 0.56 0.54
CodeLlama-13B CWE-DF 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 0.96 0.66

Qwen-2.5-14B Basic 0.54 0.52 1.00 0.68 0.50 0.50 0.74 0.60 0.53 0.54 0.43 0.48 0.48 0.49 0.74 0.59 0.52 0.52 0.53 0.52
Qwen-2.5-14B CWE 0.57 0.54 0.92 0.68 0.71 0.65 0.87 0.75 0.55 0.62 0.25 0.36 0.65 0.60 0.89 0.72 0.52 0.52 0.32 0.39
Qwen-2.5-14B CWE-DF 0.55 0.52 1.00 0.69 0.66 0.61 0.88 0.72 0.56 0.58 0.42 0.49 0.64 0.59 0.95 0.73 0.55 0.56 0.45 0.50

DSCoder-15B Basic 0.50 0.50 1.00 0.67 0.54 0.52 0.97 0.68 0.44 0.44 0.44 0.44 0.51 0.50 0.98 0.67 0.49 0.49 0.26 0.34
DSCoder-15B CWE 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.52 0.51 0.93 0.66 0.50 0.50 1.00 0.67 0.50 0.50 0.95 0.66
DSCoder-15B CWE-DF 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.51 0.51 0.86 0.64 0.50 0.50 1.00 0.67 0.51 0.50 0.94 0.66

codestral-22b Basic 0.50 0.50 1.00 0.67 0.52 0.51 0.91 0.65 0.49 0.49 0.63 0.55 0.50 0.50 0.93 0.65 0.50 0.50 0.40 0.44
codestral-22b CWE 0.52 0.51 0.98 0.67 0.52 0.51 0.96 0.67 0.50 0.50 0.37 0.43 0.57 0.54 0.93 0.69 0.52 0.56 0.16 0.25
codestral-22b CWE-DF 0.53 0.52 1.00 0.68 0.50 0.50 0.99 0.67 0.53 0.52 0.89 0.65 0.50 0.50 0.99 0.67 0.52 0.51 0.87 0.64

Qwen-2.5-32B Basic 0.52 0.51 1.00 0.67 0.48 0.49 0.77 0.60 0.52 0.53 0.38 0.44 0.50 0.50 0.84 0.63 0.47 0.46 0.36 0.41
Qwen-2.5-32B CWE 0.56 0.53 1.00 0.69 0.58 0.55 0.93 0.69 0.53 0.55 0.30 0.39 0.63 0.58 0.87 0.70 0.53 0.54 0.35 0.43
Qwen-2.5-32B CWE-DF 0.55 0.52 1.00 0.69 0.59 0.55 1.00 0.71 0.55 0.54 0.62 0.58 0.54 0.52 0.98 0.68 0.56 0.54 0.81 0.65

DSCoder-33B Basic 0.52 0.51 0.97 0.67 0.56 0.53 0.94 0.68 0.50 0.50 0.60 0.55 0.42 0.46 0.81 0.58 0.51 0.51 0.75 0.60
DSCoder-33B CWE 0.53 0.52 0.86 0.65 0.56 0.54 0.85 0.66 0.49 0.49 0.39 0.43 0.44 0.46 0.78 0.58 0.52 0.52 0.56 0.54
DSCoder-33B CWE-DF 0.51 0.51 0.75 0.60 0.46 0.47 0.63 0.54 0.53 0.53 0.64 0.58 0.50 0.50 0.78 0.61 0.49 0.49 0.54 0.52

CodeLlama-34B Basic 0.51 0.50 1.00 0.67 0.47 0.48 0.85 0.62 0.50 0.50 0.28 0.36 0.50 0.50 0.93 0.65 0.51 0.52 0.20 0.29
CodeLlama-34B CWE 0.57 0.54 0.94 0.69 0.49 0.49 0.94 0.65 0.50 0.51 0.17 0.25 0.53 0.52 0.98 0.68 0.51 0.54 0.08 0.14
CodeLlama-34B CWE-DF 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 0.99 0.67

Llama-3.1-70B Basic 0.51 0.50 1.00 0.67 0.51 0.51 0.84 0.63 0.51 0.51 0.71 0.59 0.53 0.52 0.92 0.66 0.51 0.51 0.90 0.65
Llama-3.1-70B CWE 0.58 0.54 0.99 0.70 0.76 0.71 0.89 0.79 0.52 0.53 0.43 0.48 0.59 0.55 0.95 0.70 0.52 0.51 0.71 0.60
Llama-3.1-70B CWE-DF 0.54 0.52 0.99 0.68 0.72 0.68 0.84 0.75 0.55 0.54 0.63 0.58 0.59 0.55 0.96 0.70 0.54 0.53 0.77 0.63

Gemini-1.5-Flash Basic 0.54 0.52 0.98 0.68 0.47 0.48 0.76 0.59 0.52 0.52 0.53 0.52 0.44 0.46 0.81 0.59 0.47 0.47 0.51 0.49
Gemini-1.5-Flash CWE 0.57 0.54 1.00 0.70 0.51 0.51 0.91 0.65 0.54 0.57 0.31 0.40 0.50 0.50 0.89 0.64 0.51 0.51 0.52 0.51
Gemini-1.5-Flash CWE-DF 0.54 0.52 1.00 0.68 0.50 0.50 1.00 0.67 0.57 0.55 0.79 0.65 0.50 0.50 0.99 0.66 0.51 0.50 0.86 0.64

GPT-3.5 Basic 0.52 0.52 0.72 0.60 0.58 0.57 0.71 0.63 0.46 0.35 0.09 0.15 0.49 0.49 0.64 0.56 0.52 0.56 0.20 0.29
GPT-3.5 CWE 0.55 0.54 0.62 0.58 0.52 0.52 0.55 0.54 0.47 0.41 0.12 0.19 0.49 0.49 0.70 0.58 0.52 0.54 0.19 0.28
GPT-3.5 CWE-DF 0.51 0.50 0.93 0.65 0.40 0.44 0.73 0.55 0.54 0.53 0.66 0.59 0.40 0.44 0.77 0.56 0.52 0.52 0.75 0.61

GPT-4 Basic 0.52 0.51 1.00 0.67 0.56 0.54 0.85 0.66 0.50 0.50 0.34 0.41 0.54 0.52 0.92 0.67 0.51 0.51 0.57 0.54
GPT-4 CWE 0.54 0.52 1.00 0.68 0.69 0.63 0.97 0.76 0.55 0.56 0.44 0.49 0.58 0.54 0.95 0.69 0.52 0.52 0.52 0.52
GPT-4 CWE-DF 0.55 0.52 1.00 0.69 0.70 0.63 0.98 0.76 0.53 0.53 0.59 0.56 0.59 0.55 0.98 0.70 0.52 0.51 0.76 0.61

is rightly predicted by GPT-4. In Listing 11, the method
write takes an array b and integers offset and length as
inputs. The expression offset + length > b.length
can lead to an Integer Overflow (CWE-190) if offset +
length exceeds the maximum integer value and this is
correctly identified by GPT-4. Finally, in Listing 12, there are

multiple array accesses that could lead to CWE-125 (Out-of-
bounds read). GPT-4 correctly identifies that the expression
ciphertextOffset + length + index could exceed
the size of the ciphertext array, leading to this vulnera-
bility.

// CVE-2021-39180

// CODE SNIPPET

public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) throws IOException {
Path relativeDir = source.relativize(dir);
final Path dirToCreate = Paths.get(destDir.
toString(), relativeDir.toString());
if(!dirToCreate.toFile().exists()) {

Files.createDirectory(dirToCreate);
}
return FileVisitResult.CONTINUE;

}

// RESPONSE WITH DATAFLOW ANALYSIS INSPIRED PROMPT
Here is a data flow analysis of the given code

snippet:
A. Sources:
1. The `dir` parameter in the `preVisitDirectory`

method.
2. The `source` variable.
3. The `destDir` variable.

B. Sinks:
1. The `Files.createDirectory` method.

C. Sanitizers:
No sanitizers are present in the code snippet.

D. Unsanitized Data Flows:
1. (dir, Files.createDirectory, The `dir` parameter

is used to create a new directory without any
sanitization or validation. If an attacker can
control the `dir` parameter, they could
potentially create directories in unintended
locations.)

2. (source, Files.createDirectory, The `source`
variable is used to create a relative path
without any sanitization or validation. If an
attacker can control the `source` variable,
they could potentially manipulate the path
creation process.)

3. (destDir, Files.createDirectory, The `destDir`
variable is used to create a new directory
without any sanitization or validation. If an
attacker can control the `destDir` variable,
they could potentially create directories in
unintended locations.)

E. Vulnerability analysis verdict: $$ vulnerability
: YES | vulnerability type: CWE-22 |
vulnerability name: Improper Limitation of a
Pathname to a Restricted Directory ('Path
Traversal') | explanation:
The code does not validate or sanitize the
‘dir‘, ‘source‘, and ‘destDir‘ variables before
using them to create a new directory. This
could allow an attacker to manipulate the path
and create directories in unintended locations,
leading to a path traversal vulnerability. $$

Listing 10: Correct response by GPT-4 on a Path Traversal
vulnerability

// TARGET CWE: CWE-190 (Integer Overflow or
Wraparound)

// CODE SNIPPET

public void write(byte[] b, int offset, int length)
throws IOException {

if (b == null) {
throw new NullPointerException();

}

if (offset < 0 || offset + length > b.length) {
throw new ArrayIndexOutOfBoundsException();

}

write(fd, b, offset, length);
}

// RESPONSE WITH DATAFLOW ANALYSIS INSPIRED PROMPT
Here is a data flow analysis of the given code

snippet:
A. Sources:
1. The byte array 'b'
2. The integer 'offset'
3. The integer 'length'

B. Sinks:
1. The 'write' function

C. Sanitizers:
1. The condition 'if (offset < 0 || offset + length

> b.length)'

D. Unsanitized Data Flows:
1. (offset, write, The offset value is directly

used in the write function without any
sanitization)

2. (length, write, The length value is directly
used in the write function without any
sanitization)

E. Vulnerability analysis verdict: $$ vulnerability
: YES | vulnerability type: CWE-190 |
vulnerability name: Integer Overflow or
Wraparound | explanation: The code does not
properly handle the case where 'offset + length
' could overflow.
If ’offset’ and ’length’ are both very large,
their sum could wrap around to a negative value,
passing the bounds check and leading to an
ArrayIndexOutOfBoundsException at runtime. $$'

Listing 11: GPT-4 with CWE-DF prompt on a real-world
Integer Overflow vulnerability

// TARGET CWE: CWE-125 (Out-of-bounds Read)

// CODE SNIPPET
public int encryptWithAd(byte[] ad, byte[]

plaintext, int plaintextOffset,
byte[] ciphertext, int ciphertextOffset

, int length)
throws ShortBufferException {

int space;
if (ciphertextOffset > ciphertext.length)

space = 0;
else

space = ciphertext.length -
ciphertextOffset;

if (!haskey) {
if (length > space)

throw new ShortBufferException();
if (plaintext != ciphertext ||

plaintextOffset != ciphertextOffset)
System.arraycopy(plaintext,

plaintextOffset, ciphertext, ciphertextOffset,
length);

return length;
}
if (space < 16 || length > (space - 16))

throw new ShortBufferException();
setup(ad);
encryptCTR(plaintext, plaintextOffset,

ciphertext, ciphertextOffset, length);
ghash.update(ciphertext, ciphertextOffset,

length);
ghash.pad(ad != null ? ad.length : 0,

length);
ghash.finish(ciphertext, ciphertextOffset +

length, 16);
for (int index = 0; index < 16; ++index)

ciphertext[ciphertextOffset + length +
index] ˆ= hashKey[index];

return length + 16;
}

// RESPONSE WITH DATAFLOW ANALYSIS INSPIRED PROMPT
Here is a data flow analysis of the given code

snippet:
A. Sources:
1. The `plaintext` array
2. The `ciphertext` array
3. The `ad` array
4. The `plaintextOffset` integer
5. The `ciphertextOffset` integer
6. The `length` integer

B. Sinks:
1. The `System.arraycopy` method
2. The `encryptCTR` method
3. The `ghash.update` method
4. The `ghash.pad` method
5. The `ghash.finish` method
6. The `ciphertext` array

C. Sanitizers:
1. The `if (ciphertextOffset > ciphertext.length)`

check
2. The `if (length > space)` check
3. The `if (space < 16 || length > (space - 16))`

check

D. Unsanitized Data Flows:
1. (plaintext, System.arraycopy, if plaintext is

larger than the destination array, it could
lead to an out-of-bounds read)

2. (ciphertext, ghash.finish, if ciphertextOffset +
length + 16 is larger than the size of

ciphertext, it could lead to an out-of-bounds
read)

E. Vulnerability analysis verdict: vulnerability:
YES | vulnerability type: CWE-125 |
vulnerability name: Out-of-bounds Read |
explanation: The code does not properly check
the boundaries of the ‘ciphertext‘ array before
reading from it, which could lead to an out-of-
bounds read if `ciphertextOffset + length + 16`
is larger than the size of the `ciphertext`

array.

Listing 12: GPT-4 with CWE-DF prompt on a real-world Out
of Bounds vulnerability

G. CWE-125 (Out-of-bounds Read in Java vs. C++)

Listing 12 presents an example of Out-of-bounds read vul-
nerability in CVEFixes Java which GPT-4 predicts correctly.
Codellama-34B also correctly predicts that this snippet is

vulnerable. Listing 13 presents an example from CVEFixes
C/C++ where Out-of-bounds read vulnerability is not possible
but this is not evident from context. Codellama-34B’s expla-
nation seems plausible given that little is known about the
pointers in question.

// CODE SNIPPET NOT VULNERABLE TO CWE-125 (Out-of-
bounds Read)

// The pointers cannot be reasoned about with this
snippet alone

snmp_ber_decode_length(snmp_packet_t *snmp_packet,
uint8_t *length)

{
if(snmp_packet->used == 0) {
return 0;

}

*length = *snmp_packet->in++;
snmp_packet->used--;

return 1;
}

// CODELLAMA-34B WITH THE DATAFLOW ANALYSIS BASED
PROMPT

Here is a data flow analysis of the given code
snippet:

A. Sources:

1. snmp_packet->in
2. snmp_packet->used

B. Sinks:

1. *length
2. snmp_packet->used

C. Sanitizers:

1. None

D. Unsanitized Data Flows:

1. (snmp_packet->in, *length, This flow could be
vulnerable to Out-of-bounds Read (CWE-125) if
the value of snmp_packet->in is not properly
validated and could be pointing to an invalid
memory location.)

2. (snmp_packet->used, snmp_packet->used--, This
flow could be vulnerable to Out-of-bounds Read
(CWE-125) if the value of snmp_packet->used is
not properly validated and could be pointing to
an invalid memory location.)

E. Vulnerability analysis verdict: $$ vulnerability
: YES | vulnerability type: CWE-125 |
vulnerability name: Out-of-bounds Read |
explanation: The code snippet does not properly
validate the input values, which could lead to
an Out-of-bounds Read vulnerability. $$

Listing 13: Codellama-34B with CWE-DF prompt on a real-
world Out of Bounds vulnerability (incorrect)

	Introduction
	Approach
	Datasets
	OWASP (Synthetic)
	Juliet (Synthetic)
	CVEFixes (Real-World)

	Metrics
	Large Language Models
	Prompting Strategies for LLMs
	Basic prompt
	CWE specific prompt
	Dataflow analysis-based prompt
	Other prompting strategies

	Dataset Processing and Selection
	Experimental Setup

	Results
	RQ1: Effectiveness of LLMs
	RQ2: Comparison of Prompting Strategies
	RQ3: Performance of LLMs across CWEs
	RQ4: LLMs vs Static Analysis Tools
	RQ5: LLMs vs Deep Learning-Based Tools

	Related Work
	Threats to Validity
	Conclusion
	References
	Appendix
	Dataset Processing and Selection
	Prompting Strategies
	Other Prompting Strategies
	Detailed metrics across all LLMs and Datasets
	More examples of CodeQL vs. LLMs
	Qualitative analysis of GPT-4 responses
	CWE-125 (Out-of-bounds Read in Java vs. C++)

