
CTSketch: Compositional Tensor Sketching
for Scalable Neurosymbolic Learning

Seewon Choi⇤
University of Pennsylvania
seewon@seas.upenn.edu

Alaia Solko-Breslin⇤

University of Pennsylvania
alaia@seas.upenn.edu

Rajeev Alur
University of Pennsylvania
alur@seas.upenn.edu

Eric Wong
University of Pennsylvania
exwong@seas.upenn.edu

Abstract

Many computational tasks benefit from being formulated as the composition of neu-
ral networks followed by a discrete symbolic program. The goal of neurosymbolic
learning is to train the neural networks using end-to-end input-output labels of the
composite. We introduce CTSketch, a novel, scalable neurosymbolic learning algo-
rithm. CTSketch uses two techniques to improve the scalability of neurosymbolic
inference: decompose the symbolic program into sub-programs and summarize
each sub-program with a sketched tensor. This strategy allows us to approximate
the output distribution of the program with simple tensor operations over the input
distributions and the sketches. We provide theoretical insight into the maximum
approximation error. Furthermore, we evaluate CTSketch on benchmarks from the
neurosymbolic learning literature, including some designed for evaluating scalabil-
ity. Our results show that CTSketch pushes neurosymbolic learning to new scales
that were previously unattainable, with neural predictors obtaining high accuracy
on tasks with one thousand inputs, despite supervision only on the final output. 2

1 Introduction

Many computational tasks can be formulated as the composition of neural networks whose out-
puts are fed into a discrete program. Neurosymbolic learning aims to train the neural network
using only end-to-end labels of the composite. Concretely, given a parameterized neural network
M✓, a fixed symbolic program c, and training data ((x1, . . . , xn), y), the goal is to minimize the
loss L(c(M✓(x1, . . . , xn)), y) to optimize ✓. The key challenge concerns computing the output
distribution of c with respect to its input distributions while ensuring the loss is fully differentiable.

One solution to this problem is to encode c as a differentiable logic program, as Scallop [21],
DeepProbLog [25], and DeepSoftLog [23] do. Scallop uses probabilistic Datalog to specify the
symbolic program c and can be configured with different provenance semirings, which determine
how to aggregate proofs of each fact when evaluating a query. However, one limitation of many
logic programming frameworks is that they often do not support external API calls to black-box
modules within the symbolic program. This means they cannot use large language models (LLMs)
to perform reasoning, which can be useful for certain tasks. For example, scene recognition has a
natural decomposition of an object detector followed by a program that prompts an LLM to classify
the scene based on the object predictions.

⇤Equal contribution.
2Code is available at https://github.com/alaiasolkobreslin/CTSketch

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/alaiasolkobreslin/CTSketch

Other neurosymbolic learning solutions instead treat c as a black-box that can be encoded in any
language and can include API calls. ISED [31] and IndeCateR [9] are techniques that fall into
this category, as they both sample inputs to c and compute the corresponding outputs to associate
rewards with inputs. A-NeSI [32] is another black-box technique that uses a neural network to
perform approximate inference over the weighted model counting (WMC) problem—the problem of
computing the probability of each possible output by adding the probabilities of the corresponding
input assignments–which is known to be computationally expensive [2]. While black-box learning
algorithms can learn tasks that cannot be encoded as differentiable logic programs, they suffer from
slow convergence and low accuracy on tasks with many inputs. This raises the question: can one
design a more scalable solution by combining the strengths of white- and black-box techniques?

We propose CTSketch, a learning algorithm that encodes programs in tensors. In particular, the tensor
summary � captures the exact input-output relationship of c, i.e., �[r] = c(r). Since the size of �
matches the input space of c, it may be computationally unaffordable to store � if c involves a large
number of inputs. CTSketch uses two techniques to address scalability: decompose the symbolic
program into sub-programs and sketch each sub-program summary. For white-box programs in which
the internals are known, we can manually specify sub-programs that form a tree structure. In this
architecture, inference proceeds through each sub-program by computing the product of its summary
tensor and the input probabilities. The resulting distributions are passed on to the next sub-programs
as inputs, and this process repeats until the last layer produces the final output distribution.

We use tensor sketching methods to reduce the size of sub-program summaries and increase the
efficiency of inference. These techniques decompose a high-dimensional tensor into a product of
low-rank tensors with low reconstruction error. Tensor sketching can be applied to any symbolic
component, including black-box programs, regardless of the sub-program decomposition. With these
sketches, we can perform inference via simple tensor operations and efficiently obtain the expected
value of the output. From the reconstruction error of the sketching methods, we derive a bound
on the maximum error of the approximation of the output distribution, providing insight into the
performance of CTSketch.

In summary, the main contributions of this paper are as follows. First, we introduce program
decomposition with tensor summaries as a way to scale neurosymbolic learning. Next, we introduce
CTSketch, a scalable algorithm for learning neurosymbolic programs using composed tensor sketches.
Then, we derive a bound on the maximum error of the approximation obtained by CTSketch. Finally,
we conduct a thorough evaluation using state-of-the-art neurosymbolic frameworks against a diverse
set of benchmarks. Our results demonstrate that CTSketch pushes the frontier of neurosymbolic
learning, broadening its applicability to larger problems. In particular, it can solve the task of adding
one thousand handwritten digits, which is a significantly larger problem than what prior works could
solve, while remaining competitive with existing techniques on standard neurosymbolic benchmarks.

2 Overview

2.1 Problem Statement

For a task that involves unstructured inputs (x1, . . . , xn), the training pipeline consists of neural
networks M with parameters ✓, followed by a symbolic program c : R ! Y that computes a
structured output y given structured inputs r1, . . . , rn 2 R1 ⇥ · · ·⇥Rn = R. For each input xi, the
neural network outputs a probability distribution pi over discrete values (symbols) in Ri. We aim to
estimate the distribution of the outputs of c given the input distributions pi, with the goal to optimize
✓ using only end-to-end training data ((x1, . . . , xn), y), without intermediate supervision on r.

In order to predict the probability of each output ŷ 2 Y given input distributions p1, . . . , pn, we aim
to approximate the following WMC problem

WMC(ŷ|p1, . . . , pn) =
X

r2R,c(r)=ŷ

nY

i=1

pi(ri) (2.1)

using tensors that summarize the program. We summarize the input-output pairs of the program using
a single tensor � : Y |R1|⇥···⇥|Rn|, which maps each input combination to its corresponding program

2

Figure 1: Program decomposition for sum4. �1 computes the sum of 2 digits, and �2 computes the
sum of the results from the first sums.

Figure 2: �1 and �2 for decomposed sum4 without sketching (left of ⇡) and with sketching
(right of ⇡). Sketching �i involves decomposing it as the product of rank-2 tensors ti1 and ti2

.
output. It is also useful to represent � using a one-hot tensor �OH : {0, 1}|R1|⇥···⇥|Rn|⇥|Y |:

�OH[r1, . . . , rn, ŷ] =

⇢
1 c(r1, . . . , rn) = ŷ
0 otherwise.

During inference, after obtaining predicted distributions pi : [0, 1]|Ri| from the network, we can
initialize p to be their outer product, i.e., p = ⌦n

i=1pi, and compute the probability of each output
ŷ 2 Y , using Equation 2.1 with �OH as the indicator function:

py=ŷ =
X

r1,...,rn

�OH[r1, . . . , rn, ŷ] · p[r1, . . . , rn]. (2.2)

The problem with this approach is that the size of � increases exponentially with the number of inputs,
limiting its scalability. To address this challenge, we decompose � and use a low-rank approximation
of each component.

2.2 Program Decomposition and Sketching

To decompose � for a given task, it is necessary to manually separate � into sub-programs. For
instance, the program that adds 4 handwritten digits can be decomposed as the sum of 2 sums (Fig.
1). The neural network predictions of the digits p1i = M✓(xi) are used as inputs to the first 2-digit
sum �1. Inference through this first layer outputs distributions p2j , i.e., inputs to the second sum �2.

While CTSketch can use any tensor sketching algorithm, we explain our method with tensor-train
singular value decomposition (TT-SVD) [28]. The goal of TT-SVD is to find low-rank tensors, called
cores, that reconstruct the original tensor with low error (Fig. 2). Given an approximation rank ⇢,
each core ti is built by reshaping the tensor into a matrix by flattening all except the i-th dimension,
applying truncated SVD, and taking the top ⇢ right singular vectors. With a large enough rank,
TT-SVD can achieve an arbitrarily small error.

We use TT-SVD to sketch each sub-program summary �i : Y |R1|⇥···⇥|Rd|. Given ⇢, TT-SVD outputs
cores (ti1, . . . , t

i
d) where ti1 : R1⇥|R1|⇥⇢, tid : R⇢⇥|Rd|⇥1, and all other tij : R⇢⇥|Rj |⇥⇢. The full

tensor reconstruction Ti is defined as

Ti[l1, . . . , ld] =
⇢X

k1,...,kd�1

dY

j=1

tij [kj�1, lj , kj] (2.3)

3

where k0 = 1 and kd = 1. Note that we do not fully reconstruct T during inference in CTSketch, as
this would not reduce memory overhead. Instead, we take the product of individual cores and input
distributions to get an approximate output. We describe this process in more detail in §3.2.

This strategy differs from prior works on neurosymbolic scalability. The most closely related work
is A-NeSI [32], which learns a neural network (prediction model) to predict the WMC result given
probability distributions from the perception network (inference model). Therefore, the weights of
both the inference and prediction models are learned during training. CTSketch circumvents this
additional training complexity by requiring the task-specific program architecture to be user-defined
and initialized by iterating through all (or some subset of) input-output pairs. These initialized tensors
accurately capture the program semantics, and after sketching, the WMC approximation is still very
accurate because sketching methods guarantee low error. This is in contrast to the DNN used by the
inference model in A-NeSI, which can be trained to achieve high accuracy but lacks a theoretical
guarantee on the error of the estimate.

3 CTSketch

3.1 Algorithm

When the symbolic program c has many inputs, we manually decompose it into sub-programs that
from a tree structure of m layers. The leaves at layer 1 are neural network predictions p1i = M✓(xi)
and the root is the final output. The exact structure can be flexible, with one constraint to allow the
computation to proceed sequentially from layer 1 to m: the sub-program at layer i can only take
outputs from the previous layers pj<i as inputs. The program does not need to be decomposed into a
prefect tree as in Figure 1. For instance, it can contain bounded loops, which can be decomposed by
unrolling into a sequence of repeated layers. For each sub-program, its input and output dimension
need to be specified. For the sum4 case, the input specifications would be c11 : (p11, p

1
2), c

1
2 : (p13, p

1
4)

and c21 : (p21, p
2
2).

We describe the steps of CTSketch using sum4 (Fig. 1) and provide pseudocode in Appendix A.
Prior to training, CTSketch initializes each �i, using ci, either by sampling a subset of the possible
inputs to the sub-program or enumerating all combinations and computing the corresponding outputs.
Note this does not require labeled data (x, y) as we use structured input/output pairs (r, y). After
initializing each �i, the algorithm obtains cores (ti1, . . . , tid) by sketching �i. The decomposition
rank ⇢ is a hyperparameter and can be chosen to be the full rank that equals the minimum product
of the preceding or succeeding dimensions, mini

⇣Qi�1
k=0 |Rk|,

Qd
k=i+1 |Rk|

⌘
. In this case, the i-th

core would exactly match the original tensor flattened into three dimensions, and the others would be
identity matrices, ensuring a reconstruction error of zero.

After computing the sketches, for each training example ((x1, . . . , xn), y) and its neural network
predictions (p11, . . . , p

1
n) = M✓(x1, . . . , xn), CTSketch goes layer-by-layer through the program

layers and computes the expected output for each sub-program.

3.2 Sketching Sub-Programs

We explain the inference steps by continuing with the sum4 example. Assuming we use rank-2
TT-SVD decomposition, the program summary �1 of the first layer decomposes into two rank-2
tensors t11 and t12, which are multiplied with network predictions p11 and p12 to produce v 2 R. Note
that we can compute v without explicitly reconstructing the full tensor (Equation 3.3).

v =

|R1|X

a

|R2|X

b

2X

x

p11[a]p
1
2[b]t

1
1[a, x]t

1
2[x, b] (3.1)

=
2X

x

0

@
|R1|X

a

p11[a]t
1
1[a, x]

1

A

0

@
|R2|X

b

p12[b]t
1
2[x, b])

1

A (3.2)

= (p11
>
t11) · (t12p12) (3.3)

4

We apply the RBF kernel and L1 normalization to convert the value into a probability distribution
p2i 2 R19, to be used as input in the following layers.

p21[j] = RBF(v, j) = exp
✓
� 1

2�2
kv � jk2

◆

Such transformation is not needed for the last layer, where the value can be directly compared with the
ground truth for the loss computation (e.g., using L1 loss). Hence, the final output space, computed
by the last layer, can be infinite (e.g., floating-point outputs).

For programs with a finite output space, we can instead decompose the one-hot tensor summary �OH
1

and obtain three rank-2 tensors: t11, t12 and t13. Multiplying these with network predictions p11 and p12
results in a distribution p21 2 R19. This is also computable without explicit reconstruction.

p21[j] =

|R1|X

a

|R2|X

b

2X

x

2X

y

p11[a]p
1
2[b]t

1
1[a, x]t

1
2[x, b, y]t

1
3[y, j] (3.4)

=
2X

y

t13[y, j]
2X

x

0

@
|R1|X

a

p11[a]t
1
1[a, x]

1

A

0

@
|R2|X

b

p12[b]t
1
2[x, b, y]

1

A (3.5)

=
2X

y

t13[y, j]
⇣
p11

>
t11

⌘
·
�
t12[:, :, y]p

1
2

�
(3.6)

The two distributions p21 and p22 are input to the second layer, and repeating this process produces the
final output used for the loss computation. Note that we use the symbolic program c at test time with
the argmax inputs ri = argmax

j2|Ri|
(M✓(xi)) instead of the sketches.

3.3 Bound on Approximation Error

Suppose that we use TT-SVD to decompose �i, and the tensor reconstructed from the cores is Ti
(Equation 2.3). Let "k be the truncation error of the decomposition: for the kth core, "k is the
Frobenius norm of the singular values discarded during the truncation step. With this, we can state
the bound on the reconstruction error.

Theorem 3.1 [28]. The reconstruction error of T satisfies

k�i � TikF 

vuut
d�1X

k=1

"2k. (3.7)

In practice, the reconstruction error is very low, even for small values of approximation rank ⇢. For
example, in the sumn task, where the goal is to predict the sum of n digits, we decompose the
program into log2(n) layers, with each sub-program computing the sum of its two inputs (Fig. 1).
Even for sum1024, where the summary tensor of the sub-program for the final layer, �10, has shape
4609⇥ 4609, rank 2 is enough to give us a reconstruction error  1e-5 for all layers. With such a
low reconstruction error, we can also guarantee that the product of each Ti with the corresponding
input distributions will have a very low error. We derive an error bound of the output distribution if
we were to do a full reconstruction of �i.

Theorem 3.2 (CTSketch error bound). For input distribution p, The error of the output distribution is
bounded by

k�OH
i p� T OH

i pk2 
p
2kpkF b4k�i � Tik2F c

1
2 . (3.8)

We provide a short proof, which uses the Cauchy-Schwartz inequality, in Appendix B. While using
the full reconstruction is not exactly how CTSketch performs inference, it still gives us a good idea
of how well the algorithm approximates the final distribution. CTSketch takes the product of each
core, without reconstruction, with the respective input distribution and obtain an expected value of
the output. This is then converted to a distribution with the RBF kernel and L1 normalization.

5

4 Evaluation

In this section, we evaluate CTSketch and aim to answer the following research questions:

RQ1: Can CTSketch learn tasks with a large number of inputs that are not solvable by prior works?
RQ2: How does CTSketch perform on benchmarks that can be solved by existing techniques?
RQ3: How efficiently does CTSketch learn, i.e., how quickly does it converge compared to the

baselines?
RQ4: How does the approximation rank of CTSketch influence its performance and training time?

4.1 Benchmark Tasks

We consider tasks from the neurosymbolic learning literature, including some designed for evaluating
scalability.

MNIST Sum. We consider the problem of computing the sum of handwritten digits (sumn) from
the MNIST dataset [19]. We use sums of n = 2k digits, where k 2 {2, 4, 6, 8, 10}. Each task uses a
training set of 5K samples and a testing set of 1K samples, except sum1024 where we use 4K training
samples due to resource constraints.

Multi-digit Addition. We use the Multi-digit MNISTAdd task (addn), originally proposed by [25],
where the goal is to compute the sum of two n-digit numbers. We use n 2 {1, 2, 4, 15, 100} with a
training set of 60,000/2n samples and a test set of 10,000/2n samples.

Visual Sudoku. We use the ViSudo-PC dataset [1] containing 200 4x4 and 2K 9x9 filled boards for
training and testing. The goal of this task is to predict whether the input is a valid Sudoku board.

Sudoku Solving. The goal of this task is to solve a 9x9 Sudoku puzzle, where the board is given as
a sequence of MNIST images with the digit 0 representing an empty cell. We use the SatNet [33]
dataset with 9K training samples and 500 test samples and follow the same experimental setup as [4].

HWF. The Hand-Written Formula (HWF) task uses a dataset from [20] of 10K formulas of length
1–7 containing handwritten images of digits and operators. The dataset includes 1K length 1 formulas,
1K length 3 formulas, 2K length 5 formulas, and 6K length 7 formulas. The goal is to predict the
result of the formula evaluation.

Leaf Identification and Scene Classification. We include two tasks from [31] which use GPT-4 to
perform reasoning in the symbolic component for leaf identification and scene recognition, using
datasets from [3] and [27] respectively. The goal is to identify a leaf species from the predicted
features or classify a scene from the predicted objects.

4.2 Baselines and Experimental Setup

We choose several neurosymbolic techniques as baselines, with some specifically designed for
scalability. We include Scallop [21], a framework that uses probabilistic Datalog to specify the
symbolic component and has been shown to outperform DeepProbLog [25]. We also compare
with DeepSoftLog (DSL) [23] for MNIST sum and multi-digit addition, but omit for other tasks
since it cannot encode programs that use GPT-4 (leaf, scene), and requires customized solutions in
which encoding complex reasoning is difficult (visudo, sudoku, hwf). We also consider IndeCateR
[9], a scalable gradient estimator with lower variance than REINFORCE [34], ISED [31] that uses
sampling and a summary logic program to obtain a custom loss, and A-NeSI [32], a framework for
approximating WMC results by training a neural estimator.

We run all experiments on a machine with one 14-core Intel i9-10940X CPU, one NVIDIA RTX
3090 GPU, and 66 GB of RAM. We run each task with 10 random seeds and apply a timeout of
5 seconds per training example. We choose the number of epochs used for each technique based
on when training saturates. For MNIST tasks, we use LeNet [19], a 2-layer CNN-based model,
and we use a similar architecture for HWF and leaf. For the scene task, we use YOLOv8 [30] and
a 3-layer CNN to detect objects. We also select the sample count, a key hyperparameter used in
IndeCateR and ISED, based on the task, with the goal of balancing the training time while also giving
the frameworks enough samples to learn. We describe the choices of other hyperparameters as well
as the task decompositions in Appendices C.1 and C.2.

6

Table 1: Test accuracy results for sumn and addn. The reference approximates the accuracy of a
neural predictor for MNIST images with 0.99 accuracy using 0.99n for sumn and 0.992n for addn.

Accuracy (%)
Method sum16 sum64 sum256 sum1024 add2 add4 add15 add100

Scallop 8.43 TO TO TO 95.3 TO TO TO
DSL 2.19 0.78 TO TO 96.6 93.5 77.1 25.6
IndeCateR 83.01 44.43 0.51 0.60 93.3 89.0 69.6 6.4
ISED 73.50 1.50 0.64 ERR 93.1 89.71 0.0 0.0
A-NeSI 17.14 10.39 0.93 1.21 96.0 92.1 76.8 ERR
CTSketch (Ours) 83.84 47.14 7.76 2.73 96.7 92.51 74.8 23.5
Reference 85.15 52.56 7.63 0.003 96.06 92.27 73.97 13.40

sum1024
add100

visudo9
sudoku hwf leaf scene

0

25

50

75

100

A
cc

ur
ac

y
(%

)

CTSketch Scallop DeepSoftLog IndeCateR ISED A-NeSI

Figure 3: Test accuracy results for sum1024, add100, visudo9, sudoku, HWF, leaf, and scene tasks.
“X” indicates that there was a timeout, there was an error/overflow, or the given task was not able to
be programmed in the framework. Error bars show standard deviations.

4.3 RQ1: Scalability

To answer RQ1, we increase the number of inputs to the sumn task up to 1024, which is orders
of magnitude larger than previously studied input spaces. We report the sumn results for n 2
{16, 64, 256, 1024} in Table 1 and full results with standard deviations in Table 4 of Appendix C.3.
The reference refers to the lower bound of accuracy when the neural predictor is supervised per-input
to do individual digit recognition, computed as 0.99n .

CTSketch is the best performer on all n � 16 and is the only method to consistently match the
reference. All baseline methods fail to learn sum256, whereas CTSketch also works for sum1024.
Even with very weak supervision on only the final sum of 1024 digits, CTSketch attains a per-digit
accuracy of 93.69%. Although A-NeSI reaches similar accuracy, its per-digit accuracy stays at
17.92%, implying that the result is due to small dataset size and redundant use of training images.

While IndeCateR is overall the next best method, it faces a limit at 256 inputs and struggles even
with 25,600 samples per example. ISED requires the most computational resources and exceeds the
machine availability for n � 64 using the same sample count as IndeCateR. We reduce the sample
count to 6,400 and 1,024 for sum64 and sum256, respectively, resulting in a significant performance
drop. We report an error (ERR) for sum1024 since even a sample count of one does not work.

Scallop, DSL, and A-NeSI are unable to learn efficiently from sum16. Scallop times out with top-1
proofs for n � 64 since there are exponentially many input combinations to consider. By manually
embedding the exact WMC inference, DSL attains the highest accuracy for sum4. However, the exact
inference times out for sum16, and we use the alternative of training a surrogate neural network to
predict the inference results. This neural embedding is unable to achieve high accuracy and eventually
times out. A-NeSI also attempts to do neural approximation and similarly struggles to learn the
inference model due to limited supervision.

4.4 RQ2: Accuracy

We compare the test accuracy of CTSketch with the baselines across 11 tasks from the neurosymbolic
learning literature. We summarize the results of visual sudoku (visudo), sudoku, hwf, leaf, and scene

7

0 200 400
0

0.2

0.4

0.6

0.8

Time (seconds)

A
cc

ur
ac

y

CTSketch IndeCateR A-NeSI

Figure 4: Accuracy vs. Time for add15 for
IndeCateR, A-NeSI, and CTSketch.

0 2,000 4,000
0

0.2

0.4

0.6

0.8

1

Time (seconds)

A
cc

ur
ac

y

2 4 8 Full

Figure 5: Accuracy vs. Time for different
ranks ⇢ 2 {2, 4, 8, full}.

in Figure 3, and we report the results for addn in Table 1. Full results with standard deviations can be
found in Tables 3 and 5 (Appendix C.3). CTSketch is the highest performer on 4 tasks, including
visudo9, sudoku, and scene. Of all tasks in which CTSketch does not obtain the highest accuracy,
the largest difference in accuracy is in visudo4, where CTSketch comes within 2.55% of A-NeSI.
Furthermore, for every addn task, CTSketch comes within 5.42% of the reference accuracy (of a
0.99 accuracy MNIST predictor) but often above the reference. These results demonstrate that even
though CTSketch is designed for scalability, it can still solve a variety of classic neurosymbolic tasks.

No other baseline performs as consistently well as CTSketch across the benchmark tasks. Scallop
times out of 5 of the tasks and cannot encode the leaf and scene tasks due to their use of GPT-4. The
REINFORCE-based techniques, IndeCateR and ISED, do not scale as well as CTSketch because they
cannot get a strong enough learning signal with the specified sample count. IndeCateR lags behind
on sudoku and scene, and ISED struggles with scaling to visudo9 and addn for large values of n.
A-NeSI performs poorly on complex reasoning tasks like sudoku9 and hwf and exhibits high variance.
This is because A-NeSI trains an additional neural network to estimate the WMC result, and learns
best when there is a stronger supervision than what is provided in some tasks. For example, A-NeSI
scales well for addn where we provide per-digit supervision for the multi-digit output, but fails to
scale for tasks like sum1024 where there is weaker supervision on the final output.

4.5 RQ3: Computational Efficiency

We compare CTSketch to the baselines in terms of the test accuracy over training time on tasks: add15
and add100, and present the results in Figure 4 and Figure 6 (Appendix C.3). While the per-epoch
accuracy improvement for CTSketch is not always the largest, CTSketch learns far faster than the
baselines because of how efficiently it performs inference: the average epoch times for add15 and
add100 are 1.70 and 0.92 seconds, respectively. The next fastest methods for add15 were IndeCateR,
taking 23.07 seconds, and A-NeSI, taking 52.72 seconds per epoch on average. While DSL shows
comparable accuracy to CTSketch on these tasks, its learning is prohibitively slow, taking over 20
minutes per epoch. For some tasks, such as add100, CTSketch converges before DSL even completes
one training epoch. We can attribute this difference to the efficiency of inference. While other
techniques require training a prediction network (as in A-NeSI) or learning a neural embedding (as in
DSL), CTSketch requires only a short sequence of tensor operations to perform inference.

In our experiments, the overhead requirement of initializing and sketching sub-program summaries
is very low, taking less than one minute across all tasks. This demonstrates that the overhead of
sketching is negligible when considering the performance improvement it provides, allowing for
extremely efficient inference and fast convergence.

4.6 RQ4: Sketching Rank

We study how the rank of sketching affects the accuracy and training time with the HWF task. We
vary the rank ⇢ 2 {2, 4, 8, full} for sketching the largest tensor, which is of size 147. We plot accuracy
against time in Figure 5, where we mark the test accuracy for every 10 epochs during the first 1.5
hours of training. The comparison between the full rank and the others demonstrates the advantage of

8

sketching: when an appropriate rank is used, CTSketch can converge much faster without sacrificing
accuracy. While the training time for a single epoch is similar across the lower ranks, it takes about
twice the time using full rank. Consequently, while the rank-8 tensor converges to 95% accuracy in
70 minutes, the full rank tensor is still around 80% after 90 minutes.

The learning curve for rank 2 implies that the rank should be sufficiently large, or the neural network
will fail to learn the optimal weights even with more training. We see time and space trade-offs in
ranks 4 and 8. Since the number of entries for the sketched tensor is (5⇢2 +2⇢)⇥ 14, rank 8 requires
3.82 times more memory, but takes 30% less time to reach 90% accuracy. This demonstrates that
training is not particularly sensitive to the choice of the rank, and can be chosen flexibly depending
on the available resources. It is useful to consider both the reconstruction error ||T � �||F and the
maximum difference MAX(|T � �|) when deciding the rank. For example, the maximum error is
above 60 for the rank-4 approximation. Still, the model manages to learn as the reconstruction error
is around 0.07, which corresponds to all entries in the tensor only differing by 1e-5.

5 Limitations and Future Work

The primary limitation of CTSketch lies in requiring manual decomposition of the program component
to scale. When the full program summary tensor is computationally affordable, CTSketch is always
applicable. However, when the input and output spaces are large, program decomposition is needed
to fit program summaries in memory (Appendix D.1). The decomposition must be specified by the
user, which may be difficult or impossible for complex tasks. In this sense, CTSketch can be viewed
as a restrictive “language” in which not all tasks can be encoded. This motivates future work on
automating the decomposition, possibly using program synthesis techniques.

Furthermore, it would be interesting to explore different tensor sketching methods and the trade-offs
they provide, extending upon the initial results in Appendix D.2, where we compare TT-SVD against
CP [13], Tucker [16], and Tensor Ring [37] decomposition methods. When using these methods,
we initialize the tensor summary by enumerating all possible input combinations upfront, before
sketching. If we instead use a streaming tensor sketching method, we would iteratively refine the
sketches with a subset of input-output pairs at each iteration. A small amount of time overhead to
update the sketches would result in a significant reduction in memory.

6 Related Work

Neurosymbolic WMC techniques. These frameworks provide techniques for computing the exact
or approximate WMC result for a given input distribution and a program. [36] proposed a semantic
loss function for learning with symbolic knowledge, which measures how well neural network
outputs satisfy a given constraint using sampling for the WMC approximation. DeepProbLog [25]
performs the exact WMC computation during inference, making it prohibitively expensive to use
for complex tasks. Scallop [21] offers a more scalable solution by using provenance semirings
that determine which proof terms to drop in the WMC approximation. Other solutions focus on
treating the symbolic component as a black-box that can be written in any language; ISED [31]
uses a sampling procedure, and A-NeSI [32] trains an additional neural network, to approximate the
WMC result. While CTSketch and these methods both learn with a WMC estimate, CTSketch takes a
different approach by performing inference using sketched tensor summaries. Inference in CTSketch
does not aggregate proofs through a logic program (as in Scallop and DeepProbLog), or requires
weight optimization of the approximation model (as in A-NeSI), resulting in more efficient learning.

Other logic programming frameworks. Other logic programming neurosymbolic techniques solve
the learning problem without any exact or approximate weighted model counting during inference.
[26] proposed extending DeepProbLog with an approximate inference technique, called DPLA*,
which involves an A*-like search to obtain a small set of best proofs for a given query. DeepStochLog
[35] uses stochastic (rather than probabilistic) logic programming to encode neurosymbolic programs
and uses SLD resolution to get the probability of deriving a certain goal. On the other hand,
DeepSoftLog [23] uses soft-unification to integrate embeddings into probabilistic logic programming.
DeepSeaProbLog [11] also extends DeepProbLog by offering support for discrete-continuous random
variables and uses weighted model integration, which can handle infinite sample spaces unlike
weighted model counting. Abductive learning techniques [5, 14], which often use Prolog for the

9

symbolic component, offer an alternative solution that learns by by abducing pseudo-labels from
ground-truth labels. These works use logic programming languages to encode the program component,
unlike CTSketch which represents the program component with tensor summaries.

Arithmetic and probabilistic circuits. Arithmetic and probabilistic circuits (ACs and PCs) enable
probability distributions to be computed in a fully differentiable manner with a combination of sum
and product nodes [6, 7, 8]. This differentiability property makes them suitable for encoding the
reasoning layer in neurosymbolic architectures. For example, a Semantic Probabilistic Layer has been
proposed to integrate neural networks with logical constraints encoded as a PC and has been applied
to tasks such as pathfinding [36]. However, one challenge with ACs and PCs in neurosymbolic
learning is that it is difficult to run them on modern tensor accelerators. To solve this problem,
PyJuice has been proposed as a general implementation design for running inference through PCs
on the GPU [22]. Additionally knowledge layers (KLay) are a data structure for ACs that can be
parallelized on GPUs [24]. Like ACs and PCs, decomposed program summaries in CTSketch also
aim to make inference through the symbolic component fully differentiable. However, inference in
CTSketch does not need additional data structures to improve efficiency since it uses only simple
tensor operations that can already be performed on the GPU, and allows for tensor sketching to
improve memory efficiency.

Other neurosymbolic techniques. There also exist neurosymbolic techniques that do not require the
program component to be specified as a logic program. IndeCateR [9] offers a lower variance gradient
estimator than REINFORCE [34] and can scale to complex black-box neurosymbolic programs.
NASR [4] is a REINFORCE-style algorithm suited for fine-tuning models such as neural Sudoku
solvers and scene graph predictors. ISED [31] also falls under this category of techniques that treat
the neurosymbolic program as a black-box. While CTSketch is compatible with black-box programs,
as in the leaf and scene tasks, the algorithm benefits from decomposing the symbolic component when
there are many inputs. This allows CTSketch to scale far better than existing black-box frameworks,
but it requires manual effort to decompose complex tasks.

Additionally, PLIAt [10] speeds up linear integer arithmetic by representing probabilistic integers
as tensors and adapting FFT for sum operation, allowing efficient neurosymbolic inference. While
PLIAt relies on tensor operations and decomposition of problems for scalability, similar to CTSketch,
its applicability is limited to programs expressible using integer arithmetic. TerpreT [12] is a
compositional rule framework that learns programs by inferring each instruction and its arguments
sequentially. While program decomposition is central to both TerpreT and CTSketch, TerpreT is
designed for inductive program synthesis whereas CTSketch is a neurosymbolic learning algorithm
for training the neural component by backpropagating the gradient through the symbolic component.

7 Conclusion

We proposed CTSketch, a framework that uses decomposed programs to scale neurosymbolic learning.
During inference, CTSketch uses sketched tensors, each representing the input-output summary of
a sub-program, to efficiently approximate the output distribution of the symbolic component with
simple tensor operations. We provide theoretical justification for our architecture and derive an error
bound on the approximation. Our results show that CTSketch pushes the frontiers of neurosymbolic
learning by solving previously unattainable tasks, such as adding one thousand handwritten digits.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for the useful feedback. This research was supported by ARPA-H
grant D24AC00253-00 and NSF award CCF 2313010.

References
[1] Eriq Augustine, Connor Pryor, Charles Dickens, Jay Pujara, William Yang Wang, and Lise

Getoor. Visual sudoku puzzle classification: A suite of collective neuro-symbolic tasks. In
International Workshop on Neural-Symbolic Learning and Reasoning (NeSy), Windsor, United
Kingdom, 2022.

10

[2] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6):772–799, 2008.

[3] Siddharth Singh Chouhan, Uday Pratap Singh, Ajay Kaul, and Sanjeev Jain. A data repository of
leaf images: Practice towards plant conservation with plant pathology. In 2019 4th International

Conference on Information Systems and Computer Networks (ISCON), pages 700–707, 2019.

[4] Cristina Cornelio, Jan Stuehmer, Shell Xu Hu, and Timothy Hospedales. Learning where
and when to reason in neuro-symbolic inference. In International Conference on Learning

Representations, 2023.

[5] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and
logical reasoning by abductive learning. In Proceedings of the 33rd International Conference

on Neural Information Processing Systems, 2019.

[6] Adnan Darwiche. On the tractable counting of theory models and its application to truth
maintenance and belief revision. Journal of Applied Non-Classical Logics, 11, 04 2000.

[7] Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–647, July 2001.

[8] Adnan Darwiche. A differential approach to inference in bayesian networks. J. ACM,
50(3):280–305, May 2003.

[9] Lennert De Smet, Emanuele Sansone, and Pedro Zuidberg Dos Martires. Differentiable
sampling of categorical distributions using the catlog-derivative trick. In Proceedings of the

37th International Conference on Neural Information Processing Systems, volume 36, pages
30416 – 30428, 2023.

[10] Lennert De Smet and Pedro Zuidberg Dos Martires. A fast convoluted story: Scaling proba-
bilistic inference for integer arithmetics. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing

Systems, volume 37, pages 102456–102478, 2024.

[11] Lennert De Smet, Pedro Zuidberg Dos Martires, Robin Manhaeve, Giuseppe Marra, Angelika
Kimmig, and Luc De Readt. Neural probabilistic logic programming in discrete-continuous
domains. In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence,
volume 216, pages 529–538, 2023.

[12] Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli,
Jonathan Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program
induction, 2016.

[13] Richard A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for

an explanatory multimodal factor analysis. PhD thesis, University of California, Los Angeles,
1970.

[14] Hao-Yuan He, Hui Sun, Zheng Xie, and Ming Li. Ambiguity-aware abductive learning. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan
Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International Conference

on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages
18019–18042. PMLR, 21–27 Jul 2024.

[15] Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie
Si. Scallop: From probabilistic deductive databases to scalable differentiable reasoning. In
Advances in Neural Information Processing Systems, volume 34, pages 25134–25145, 2021.

[16] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Rev.,
51:455–500, 2009.

[17] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor
learning in python. Journal of Machine Learning Research (JMLR), 20(26), 2019.

[18] Daniel Kressner, Bart Vandereycken, and Rik Voorhaar. Streaming tensor train approximation.
SIAM Journal on Scientific Computing, 45(5):A2610–A2631, 2023.

11

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[20] Qing Li, Siyuan Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu.
Closed loop neural-symbolic learning via integrating neural perception, grammar parsing, and
symbolic reasoning. In Proceedings of the 37th International Conference on Machine Learning,
page 5884–5894, 2020.

[21] Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming.
Proc. ACM Program. Lang., 7(PLDI), June 2023.

[22] Anji Liu, Kareem Ahmed, and Guy Van Den Broeck. Scaling tractable probabilistic circuits: a
systems perspective. In Proceedings of the 41st International Conference on Machine Learning,
2024.

[23] Jaron Maene and Luc De Raedt. Soft-unification in deep probabilistic logic. In Proceedings

of the 37th International Conference on Neural Information Processing Systems, volume 36,
pages 60804–60820, 2023.

[24] Jaron Maene, Vincent Derkinderen, and Pedro Zuidberg Dos Martires. KLay: Accelerating
arithmetic circuits for neurosymbolic AI. In The Thirteenth International Conference on

Learning Representations, 2025.

[25] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De
Raedt. Deepproblog: neural probabilistic logic programming. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems, NIPS’18, page 3753–3763,
2018.

[26] Robin Manhaeve, Giuseppe Marra, and Luc De Raedt. Approximate Inference for Neural
Probabilistic Logic Programming. In Proceedings of the 18th International Conference on

Principles of Knowledge Representation and Reasoning, pages 475–486, 2021.

[27] Lukas Murmann, Michael Gharbi, Miika Aittala, and Fredo Durand. A multi-illumination
dataset of indoor object appearance. In 2019 IEEE International Conference on Computer

Vision (ICCV), Oct 2019.

[28] Ivan Oseledets. Tensor-train decomposition. SIAM J. Scientific Computing, 33:2295–2317, 01
2011.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

[30] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 779–788, 2016.

[31] Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev Alur, Mayur Naik, and
Eric Wong. Data-efficient learning with neural programs. In Advances in Neural Information

Processing Systems, volume 37, pages 14666–14689, 2024.

[32] Emile van Krieken, Thiviyan Thanapalasingam, Jakub Tomczak, Frank van Harmelen, and
Annette Ten Teije. A-nesi: A scalable approximate method for probabilistic neurosymbolic in-
ference. In Proceedings of the 37th International Conference on Neural Information Processing

Systems, volume 36, pages 24586–24609, 2023.

[33] Po-Wei Wang, Priya L. Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning
and logical reasoning using a differentiable satisfiability solver. In International Conference on

Machine Learning, 2019.

[34] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3–4):229–256, 1992.

12

[35] Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. Deepstochlog: Neural
stochastic logic programming. Proceedings of the AAAI Conference on Artificial Intelligence,
36(9):10090–10100, 2022.

[36] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
function for deep learning with symbolic knowledge. In Proceedings of the 35th International

Conference on Machine Learning, pages 5502–5511, 2018.

[37] Qibin Zhao, Guoxu Zhou, Shuhui Xie, Long Zhang, and Andrzej Cichocki. Tensor ring
decomposition. In Proceedings of the 33rd International Conference on Machine Learning

(ICML), pages 2016–2025, 2016.

13

A Pseudocode

Without loss of generality, we assume in the pseudocode that there is only one program in each layer
to simplify the notation. For example, we decompose the sum4 program to consist of three layers,
each with sub-programs c1, c2, and c3, instead of two layers as in Figure 1.

Algorithm 1 CTSketch training algorithm

Require: Symbolic programs c1, . . . , cm where ci takes di inputs and outputs y 2 |Yi|, neural
network M✓, loss function L, and training dataset D.
function TRAIN(D)

for i = 1, . . . ,m do
ti1, . . . , t

i
di
 INITIALIZE(ci)

end for
for ((x1, . . . , xn), y) 2 D do

(p11, . . . , p
1
n) M✓(x1, . . . , xn)

for i = 1, . . . ,m do
(p1, . . . , pdi) INPUTS(ci)
vi =

P|p1|
x ti1[x]p1[x]

for k = 2, . . . , di do
vi =

P⇢
a

P|pk|
x vi[a]tik[a, x]pk[x]

end for
for j = 1, . . . , |Yi| do

pi+1[j] RBF(vi, j)
end for
pi+1 norm(pi+1)

end for
l l + L(vm, y)

end for
optimize l and update ✓

end function

B Approximation Error Proof

Suppose that we sketch �i with TT-SVD, i.e., (ti1, . . . , tid) SKETCH(�i), where the sketching
rank is ⇢. Let Ti be the reconstruction of �i using the sketches.

Theorem 3.2 (CTSketch error bound). The error of the output distribution satisfies

k�OH
i p� T OH

i pk2 
p
2kpkF b4k�i � Tik2F c

1
2 . (B.1)

Proof. With some rearranging and by definition of the L2 norm, we have

k�OH
i p� T OH

i pk2 = k(�OH
i � T OH

i)pk2 (B.2)

=

sX

ŷ2Y

h(�OH
i � T OH

i)[:, . . . , :, ŷ], pi2F . (B.3)

Applying the Cauchy-Schwartz inequality to the inner product, we obtain


sX

ŷ2Y

k(�OH
i � T OH

i)[:, . . . , :, ŷ]k2F kpk2F (B.4)

= kpkF
sX

ŷ2Y

k(�OH
i � T OH

i)[:, . . . , :, ŷ]k2F (B.5)

= kpkF
sX

ŷ2Y

X

r1,...,rd

(�OH
i � T OH

i)[r1, . . . , rd, ŷ]2. (B.6)

14

Note that if |�i[r1, . . . , rd]�Ti[r1, . . . , rd]| � 0.5, then the one-hot encodings �OH
i [r1, . . . , rd] differ

in exactly two positions, which results in a squared difference of 2. Pulling this factor out, we obtain
the desired result.

= kpkF
s

2
X

r1,...,rd

I(|�i[r1, . . . , rd]� Ti[r1, . . . , rd]| � 0.5) (B.7)

By rearranging the definition of ||�i � Ti||, the maximum, i.e. worst case, number of r1, . . . , rd such
that |�i[r1, . . . , rd]� Ti[r1, . . . , rd]| � 0.5 is bk�i�Tik2

F
0.52 c = b4k�i � Tik2F c.

 kpkF
q
2 ⇤ b4k�i � Tik2F c (B.8)

=
p
2 kpkF b4k�i � Tik2F c

1
2 (B.9)

C Experiment Details and Complete Results

C.1 Experimental Setup and Hyperparameters

Unless stated otherwise, we keep the optimizer, training epochs, and batch size consistent across
methods, and use the best learning rate among {1e-3, 5e-4, 2e-4, 1e-4, 5e-5}. For neural-GPT
experiments, leaf classification and scene recognition, we copy the model, prompt and configuration
from the original paper [31] where the tasks were introduced. The hyperparameters used for CTSketch
are summarized in Table 2.

Table 2: Hyperparameters used in CTSketch for the benchmark tasks

hyperparameter visudo sudoku hwf leaf scene sumn addn

optimizer Adam AdamW Adam Adam Adam Adam Adam
learning rate 1e-3 / 5e-4 5e-6 1e-4 1e-4 5e-4 1e-3 / 5e-4 1e-3
training epochs 1000 / 5000 10 150 100 50 100 / 150 100 / 300
batch size 20 256 16 16 16 16 64
sketching rank full 2 8 full full 2 full

For the baseline methods Scallop, IndeCateR, ISED, A-NeSI, and DeepSoftLog we use:

Visual Sudoku. We use top-3 semiring for Scallop and learning rate 2e-4. We use 20 ⇥N ⇥N2

samples for IndeCateR, and learning rates 2e-4 and 5e-5 for 4x4 and 9x9 board, respectively. We
use the same sample count for ISED and learning rates 1e-3 and 5e-4. For A-NeSI, we copy the
hyperparameters used in their paper for this task.

MNIST Sum. For Scallop, we again use top-3 proofs and 1e-4 learning rate. For IndeCateR and
ISED, we use a sample count of 100⇥ n. For IndeCateR, we run for 300 epochs, using batch size 10
learning rates 1e-3 and 5e-4. We use learning rates 1e-4 and 5e-5 for ISED, and reduce the sample
count to 6400 and 1024 for sum64 and sum256. For DSL and A-NeSI, we copy the parameters used
for MNIST-Add tasks in their papers. In the case of DSL, we use the neural embeddings for sum16

with learning rate 1e-3 and 1e-5 weight decay. For A-NeSI, we decrease the learning rate to 5e-4,
2e-4, and 1e-4 for n = 64, 256, 1024. Due to memory constraints, we also reduce the embedding
size from 800 to 400 for n = 1024.

Multi-digit Addition. For Scallop, we again use top-3 proofs and 1e-3 learning rate, and we use
30 epochs. For IndeCateR, we use a sample count of 10 and a 1e-3 learning rate. We train for 15
epochs for all values of n except 100, where we use 45 epochs. These are the points when training
saturates and accuracy starts to drop slightly with additional training. For ISED, we use a sample
count of 100 and a 1e-4 learning rate. We train for 10 epochs because this is when training saturates.
For A-NeSI and DeepSoftLog, we use the same hyperparameters used in their evaluation that have
been optimized for multi-digit addition.

15

C.2 Task Decomposition

MNIST Sum. These tasks involve adding n digits, where n is some power of 2. As a result, we
structure the decomposition as a tree with log2(n) layers. Each �i takes two inputs, each being
integers between 0 and 9 ⇤ 2i + 1, and the result is the sum of the two inputs. Therefore, the shape of
�i is (9⇤2i+1)⇥ (9⇤2i+1), and its entries are the sum of the indices. Concretely, �i[a, b] = a+ b.

Multi-digit Addition. These tasks involve adding two n-digit numbers. We structure the decomposi-
tion as a chain of adds and carries. �1 is the same as the first layer in MNIST sum, which takes 2
digits as inputs, and the possible outputs are 0� 18. For each place in the n-digit numbers, we add
the two digits using �1 in the first layer. For each of the n� 1 layers after this, we define �i as the
carry sum, taking two inputs: the result of the current place sum and the result of the previous place’s
carry sum. The idea is that if the previous carry sum results in a 2-digit number, we carry over a 1,
and the current place sum predictions get incremented by 1. This means each �i is a 19⇥ 20 tensor,
with the first 10 column entries equal to the row index, and the last 10 column entries equal to one
plus the row index.

Visual Sudoku. We decompose the task of determining whether the input is a valid sudoku board
into pairwise comparisons of the cells. The cells in the same row, column, or block need to have
distinct values, which leads to a total of n = 56 and 810 comparisons for 4⇥ 4 and 9⇥ 9 sudoku
boards, respectively. Hence, the program consists of a single layer with n instances of � : N ⇥N
such that �[i, j] = i == j, where N 2 {4, 9}.

Sudoku Solving. For a single row, column, or block in a Sudoku board, if eight cells are filled with
distinct values, the remaining one cell is uniquely defined as some value v 2 [1, 9]. Using this idea,
we decompose the Sudoku solving task into multiple instances of a program c that computes the
value v given eight other values in the row, column, or block. We iterate through each cell, resulting
in a total of 3⇥ 81 instances. We allow the inputs to be 0, meaning that it is unfilled and could be any
value n 2 [1, 9]. Note that the program is no longer a one-to-one mapping between the inputs and the
output. For instance, if the eight inputs are all zeros, the output can be between 1 and 9. To encode
one-to-many relationship we use �OH : 10⇥ · · ·⇥ 9, such that �OH[n1, . . . , n8, v + 1] = 1 for all v
satisfying the constraint. The case where (n1, . . . , n8) contains redundant values is naturally ignored
as �OH[n1, . . . , n8, :] becomes an all-zero vector.

Handwritten Formula. The HWF architecture uses only one layer, but we initialize 4 different
�i tensors corresponding to each possible formula length (1, 3, 5, and 7). Since there are 14
possible symbols (10 digits and 4 arithmetic operators), �i has the same number of dimensions as the
corresponding formula length, and each dimension has size 14. Each entry represents the real-valued
output of the evaluated formula, and invalid formulas correspond to an output of 0.

Leaf Identification and Scene Classification. For these tasks that use GPT-4, the model internals
are unknown, so we do not decompose them and instead initialize a single tensor summarizing the
program. For the leaf task, there are 3 features (margin, texture, and shape) taking on 3, 3, and 6
possible values, respectively. The output values are one of the 11 possible leaf species. For the scene
task, the object detector YOLOv8 returns a maximum of 10 objects per image, where each can be
one of the 45 classes. The output values are one of the 9 possible room types.

C.3 Full Experimental Results

We report full experimental results with 1-sigma standard deviation in Tables 3, 4, and 5, and plot
test accuracy against training time on add100 task in Figure 6. Note that the training for CTSketch
converges before the first epoch of DeepSoftLog and ISED.

Table 3: Test accuracy on traditional neurosymbolic benchmarks.
Accuracy (%)

Method visudo4 visudo9 sudoku hwf leaf scene
Scallop 84.92 ± 3.11 TO TO 96.65 ± 0.13 N/A N/A
IndeCateR 87.20 ± 2.14 81.92 ± 2.11 66.50 ± 1.37 95.08 ± 0.41 69.16 ± 2.35 12.72 ± 2.51
ISED 79.40 ± 3.36 50.0 ± 0.0 80.32 ± 1.79 97.34 ± 0.26 79.95 ± 5.71 68.59 ± 1.95
A-NeSI 91.90 ± 1.90 92.11 ± 1.71 26.36 ± 12.68 3.13 ± 0.41 72.40 ± 12.24 61.46 ± 14.18
CTSketch (Ours) 89.35 ± 2.45 92.50 ± 1.81 81.46 ± 0.53 95.22 ± 0.61 74.55 ± 5.42 69.78 ± 1.52

16

Table 4: Test accuracy results for sumn. The reference approximates the accuracy of an MNIST
predictor with 0.99 accuracy using 0.99n.

Accuracy (%)
Method sum4 sum16 sum64 sum256 sum1024

Scallop 88.90 ± 10.78 8.43 ± 1.56 TO TO TO
DSL 94.13 ± 0.82 2.19 ± 0.51 0.78 ± 0.32 TO TO
IndeCateR 92.55 ± 0.87 83.01 ± 1.18 44.43 ± 10.19 0.51 ± 0.34 0.60 ± 0.23
ISED 90.79 ± 0.81 73.50 ± 2.73 1.50 ± 0.34 0.64 ± 0.26 ERR
A-NeSI 93.53 ± 0.35 17.14 ± 2.87 10.39 ± 0.92 0.93 ± 0.80 1.21 ± 1.28
CTSketch (Ours) 92.17 ± 0.43 83.84 ± 0.92 47.14 ± 3.29 7.76 ± 1.43 2.73 ± 0.81
Reference 96.06 85.15 52.56 7.63 0.003

Table 5: Test accuracy results for addn. The reference approximates the accuracy of an MNIST
predictor with 0.99 accuracy using 0.992n. For DSL and A-NeSI, we report the results from [23].

Accuracy (%)
Method add1 add2 add4 add15 add100

Scallop 96.9± 0.5 95.3± 0.6 TO TO TO
DSL 98.4± 0.1 96.6± 0.3 93.5± 0.6 77.1± 1.6 25.6± 3.4
IndeCateR 97.7± 0.3 93.3± 1.3 89.0± 1.1 69.6± 2.1 6.4± 6.6
ISED 91.4± 9.1 93.1± 3.3 89.7± 1.1 0.0± 0.0 0.0± 0.0
A-NeSI 97.4± 0.3 96.0± 0.5 92.1± 1.1 76.8± 2.8 ERR
CTSketch (Ours) 98.3± 0.2 96.7± 0.4 92.5± 1.1 74.8± 1.3 23.5± 4.9
Reference 98.01 96.06 92.27 73.97 13.40

0 20 40 60 80 100 120 140 160
0

0.1

0.2

Time (seconds)

A
cc

ur
ac

y

CTSketch IndeCateR

Figure 6: Accuracy vs. Time for add100 for IndeCateR and
CTSketch.

D Additional Ablation Studies

D.1 Decomposition and Sketching

We compare the gains of program decomposition and tensor sketching for CTSketch using the sum16

task. We vary the level of decomposition and compare accuracy, per-digit accuracy, and per-epoch
training time for using full-rank tensors against rank-2 sketches in Table 6.

For the same decomposed program structure, we observe that sketching offers substantial memory
savings, albeit with some loss in accuracy. When scaling to higher-dimensional input spaces, memory
becomes a critical bottleneck – program decomposition alone is often insufficient, which highlights
the necessity of tensor sketching for scaling. Within full-rank, the gains from greater degree of

17

decomposition are clear, both in terms of training time and memory efficiency. However, this trend
reverses with sketches, due to the use of the RBF kernel at the output of each program layer.

Table 6: Ablation on gains of program decomposition and tensor sketching using sum16. For Dims,
16 refers to no decomposition, whereas (8, 2) refers to 2-layer decomposition into two sum-8 at the
first layer and a sum-2 at the second layer. Method refers to different inference procedures, where
SKETCH uses rank-2 sketches, FULL uses one-hot program tensors �OH (Equation 3.6), and FULL
+ RBF use program tensors � with RBF kernel (Equation 3.3). OOM refers to out-of-memory.

Method Dims # Entries Accuracy (%) Digit Accuracy (%) Time(s)
SKETCH 16 600 83.52 98.86 1.72

8, 2 572 83.88 98.90 2.11
4, 4 588 83.25 98.85 2.57

2, 2, 2, 2 556 82.51 98.78 3.88
FULL 16 1.45⇥ 1018 OOM OOM OOM

8, 2 7.30⇥ 109 OOM OOM OOM
4, 4 2.72⇥ 108 85.59 99.01 17.66

2, 2, 2, 2 8.88⇥ 105 85.80 99.04 2.0139
FULL + RBF 16 1.00⇥ 1016 OOM OOM OOM

8, 2 1.00⇥ 108 83.29 98.85 17.63
4, 4 1.88⇥ 106 83.62 98.89 2.15

2, 2, 2, 2 7.18⇥ 103 82.53 98.80 3.81

D.2 Tensor Sketching Methods

We compare the performance of tensor sketching methods Tensor-Train, CP [13], Tucker [16], and
Tensor Ring [37] on sum4 and HWF in Table 7. While our method is not sensitive to the employed
method, CP decomposition may be insufficient for complex input-output relationships, such as HWF,
due to its restrictions to rank-1 tensors. Our experiments use Tensor-Train decomposition, which is
not the best performer in terms of accuracy, but is competitive while requiring less space.

Table 7: Test accuracy on different tensor sketching methods on sum4 and HWF tasks.

sum4 HWF
Method Accuracy (%) # Entries Rank Accuracy (%) # Entries Rank
Tensor Train 92.17 ± 0.43 40 2 95.22 ± 0.61 1344 8
CP 92.33 ± 0.59 40 2 72.90 ± 17.40 1568 16
Tucker 92.31 ± 0.62 44 2 95.29 ± 0.92 16776 4
Tensor Ring 92.58 ± 0.58 80 2 95.47 ± 0.51 1568 8

E License Information

To test the baselines, we used code from the official repositories of Scallop [15] (MIT), DeepSoftLog
[23] (MIT), IndeCateR [9] (Apache 2.0), ISED [31] (MIT), and A-NeSI [32] (MIT). Additionally,
for CTSketch, we used the implementation of TT-SVD from the python package tt-sketch [18] (CC
BY-NC-ND 4.0) and cp, tucker, tensor ring decompositions from tensorly [17] (BSD 3-Clause).

We used several datasets in our evaluation, namely the Multi-illumination dataset [27] (CC BY 4.0),
the handwritten formula dataset (CC BY-NC-SA 3.0) from NGS [20], and a subset of the leaf database
[3] (CC BY 4.0). As part of the scene task experimental setup, we used YOLOv8 [30] (AGPL-3.0)
and CLIP [29] (MIT).

18

	Introduction
	Overview
	Problem Statement
	Program Decomposition and Sketching

	CTSketch
	Algorithm
	Sketching Sub-Programs
	Bound on Approximation Error

	Evaluation
	Benchmark Tasks
	Baselines and Experimental Setup
	RQ1: Scalability
	RQ2: Accuracy
	RQ3: Computational Efficiency
	RQ4: Sketching Rank

	Limitations and Future Work
	Related Work
	Conclusion
	Pseudocode
	Approximation Error Proof
	Experiment Details and Complete Results
	Experimental Setup and Hyperparameters
	Task Decomposition
	Full Experimental Results

	Additional Ablation Studies
	Decomposition and Sketching
	Tensor Sketching Methods

	License Information

